
[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

An Augmented Reality application
A step-by-step approach

Vision par Ordinateur, 2022-2023
3e année SN, Parcours Multimédia

2022

Version: v2022.1.0
(master @ 655fb61 2022-10-27)

Contents
1 Objectives 1

1.1 References . 2

2 The provided code environment 2
2.1 Building the code with CMake . 3

2.1.1 Using your personal machine . 3
2.1.1.1 Windows . 3
2.1.1.2 Linux and OSX . 4

2.1.2 Using the TP machines . 4
2.1.3 Creating project files to work in Eclipse . 6

2.2 Quick start with OpenCV . 6

3 Detecting the chessboard 7

4 Detecting the chessboard on a video 10

5 Perspective rectification 11

6 Camera calibration 13
6.1 Removing the optical distortion . 14

7 The camera tracker 16

8 The KLT version 19

9 Adding the OpenGL rendering 21

10 Rendering an OBJ 3D object 24

1 Objectives
The objective of these TP sessions is to build a simple augmented reality application using
OpenCV for the camera tracking part and OpenGL for the rendering. The exercises that will
be proposed are meant to gradually introduce you to the OpenCV libraries and build all the
functions that are needed for a camera tracker in an incremental way, so that you will be able
to test and debug each function, before plugging all together in the camera tracker class.

1/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

(a) (b) (c)

Figure 1: Some of the steps that will get you to implement the AR application.

The main idea is to use a chessboard as a marker and render on top of that the augmented
reality. The final application should render an OpenGL teapot on top of the chessboard, as shown
in Figure 1.(c). We will get there step by step, first detecting the chessboard (c.f . Figure 1.(a)),
then create some basic rendering in OpenCV (c.f . Figure 1.(b)), and at last plugging everything
in the OpenGL pipeline.

1.1 References
All you need to know about OpenCV will be given to you in the form of some tutorials that
explains the basic data structures that we are going to use. Moreover, we will refer to the on-line
documentation for the functions: in this text the OpenCV functions we need to use are normally
associated with a hyper-link that refers you to the on-line documentation. More in general, you
can also find some other resources here:

• Official page of OpenCV project http://opencv.org/

• Online documentation of the API https://docs.opencv.org/2.4.13.4/

• Online tutorials https://docs.opencv.org/2.4.13.4/doc/tutorials/tutorials.html.

2 The provided code environment
Uncompress the archive that you received. This directory is organized as follows:

• doc contains a pdf copy of this text, a pdf copy of the reduced OpenCV tutorials, a pdf
copy of the full, original OpenCV tutorial, and a pdf copy of the API reference manual of
OpenCV (i.e. the copy of the online documentation).

• data contains some images, videos and other data that will be used through the TP.

• src contains the source files that you have to modify and complete; they are organize in
directories:

– tutorials contains the code used in the tutorials, in case you need to try it;
– tp contains the files that you need to modify and complete through all the sessions

of the TP.

• 3dparty this directory contains a library that will be used at the end of the TP. You
don’t have to worry (or do anything...) about this directory.

2/25

http://opencv.org/
https://docs.opencv.org/2.4.13.4/
https://docs.opencv.org/2.4.13.4/doc/tutorials/tutorials.html

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

2.1 Building the code with CMake
CMake is a cross-platform free software program that helps managing the build process of soft-
ware using a compiler-independent method. In simpler words, this means that CMake is an
utility that helps to set up the compilation environment for a given source code, independently
from the compiler and the building system that is actually used to generate the code, be it
Linux’s make, Apple’s Xcode, or Microsoft Visual Studio.

In the case of this TP, CMake will check for all the libraries that are needed to compile our
programs and it will automatically generate the corresponding compilation environment.

Follow the instructions in the following sections according to your case, whether you are
using your own machine or you are using or connecting to a machine of the school.

2.1.1 Using your personal machine

First thing, if you have not done it yet you need to install the dependencies that are needed.
You can find the detailed instructions for each OS here: instructions.

Remember that from these steps you have an enviroment variable named tpARBasePath
pointing to the root of your workspace.

Now:

• Extract the zip archive that has been provided inside the working environment where you
also have all the other libraries (the folder tpAR).

• Open a terminal or a prompt and go to the folder that you just created and create a
directory named build .

• Go the directory build and now we can launch the the CMake command to configure your
project. The command is different for each platform so follow the section that applies to
your case.

2.1.1.1 Windows

From the prompt run:

cmake .. -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE=Release ^
-DGLUT_ROOT_PATH:PATH=%tpARBasePath%\freeglut ^
-DGLM_DIR:PATH=%tpARBasePath%\glm-win\build\install ^
-DOpenCV_DIR:PATH=%tpARBasePath%\opencv-2.4.13.4\build\

(note that the character ˆ (“accent circonflexe”) is just to split the command on multiple lines
for readability, you can write the whole command on a single line removing the ˆ).

(In case adjust the string Visual Studio 16 2019 to your VS version: e.g. Visual Studio 15
2017, Visual Studio 14 2015, Visual Studio 12 2013 ...)

• Once the configuration is over, you should find the Visual Studio solution TP_Interface_AR.sln
inside the build directory.

• Open the file inside Visual Studio and you are ready to edit the code.

• To build the code you can select Build Solution from the Build menu in VS.

• To execute the code, it is better to run it from the command line: from build/bin/Release
you can execute the binaries passing the required arguments as it will be explained later.

3/25

https://github.com/simogasp/tpAR_depedencies

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

2.1.1.2 Linux and OSX
From the terminal run:

$ cmake .. -DOpenCV_DIR:PATH=${tpARBasePath}/opencv-2.4.13.4/build/install/share/OpenCV/

The code can be compiled form the build directory with the usual

$ make

and

$ make clean

to delete all the executables and the compilation objects.

The executable will be placed in build/bin/ and you can run the code with, e.g.

$./bin/mat_the_basic_image_container

2.1.2 Using the TP machines

Extract the zipped file into a directory in your home. Make sure that the path where you extract
it does not contain spaces. For example if you extract it in your home:

sgaspari@serval:~$ unzip tpAR-v2022.1.0.zip
sgaspari@serval:~$ cd tpAR-v2022.1.0

Then, create a new directory, let’s call it build :

sgaspari@serval:~/tpAR-v2022.1.0$ mkdir build
sgaspari@serval:~/tpAR-v2022.1.0$ cd build

This directory will be your compilation directory where the make is executed and it will contain
the results of the compilation, i.e. all the executables that you will generate. Now we can tell
CMake to configure and create the relevant makefile for us:

$ cmake .. -DOpenCV_DIR:PATH=/mnt/n7fs/ens/tp_gasparini/opencv2.4.13.4/share/OpenCV/

CMake will look for all the necessary libraries and generate the makefile for all the programs.1
On your screen you should see something like this:

1In case you want to try the code on a different machine, you need to first install the OpenCV libraries (from
here) and then do cmake .. -DOpenCV_DIR=path/to/OpenCVConfig.cmake in order to specify the directory
where you build them. More in general, you need to provide the path to the file OpenCVConfig.cmake, which you
can find e.g. with locate OpenCVConfig.cmake from your shell.

4/25

http://opencv.org/downloads.html

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Check that the OpenCV libraries have been correctly found and that the following message
appears
-- Found OpenCV version: 2.4.13.4

This procedure has to be done only once at the beginning, from now on you have just
to compile the code you modify in src using the usual make command. Indeed, in the build
directory you can see the Makefile we will use to compile the code. The code can be compiled
form the build directory with the usual

sgaspari@serval:~/tpAR-v2022.1.0/build$ make <filename_without_extension>

and

sgaspari@serval:~/tpAR-v2022.1.0/build$ make clean

to delete all the executables and the compilation objects. Try for example to build the code for
the first tutorial with

sgaspari@serval:~/tpAR-v2022.1.0/build$ make mat_the_basic_image_container

The executable will be placed in build/bin/ and you can run the code with

sgaspari@serval:~/tpAR-v2022.1.0/build$./bin/mat_the_basic_image_container

You can compile all the tutorials in a batch with

sgaspari@serval:~/tpAR-v2022.1.0/build$ make tutorials

Finally, you can see all the possible targets for make with

sgaspari@serval:~/tpAR-v2022.1.0/build$ make help

5/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

2.1.3 Creating project files to work in Eclipse

If you want create a project file for Eclipse to that you can use the auto-completion and the
pop-up documentation of the code, you can create it with CMake in a different directory:

sgaspari@serval:~/tpAR-v2022.1.0/$ mkdir myARproject
sgaspari@serval:~/tpAR-v2022.1.0/$ cd myARproject
sgaspari@serval:~/tpAR-v2022.1.0/myARproject$ cmake -G"Eclipse CDT4 - Unix Makefiles" ..

2.2 Quick start with OpenCV
In these exercises we will use the data structure Mat provided by OpenCV to deal with images
and matrices. We will use the OpenCV functions to create the windows and show the images
inside them, to load images and to process video streams. We have already seen an introduction
to these topics in class, you can use the document containing the short tutorials as reference
(these topics are covered in the first 4 tutorials).

In each exercise, whenever a new OpenCV function is used, you will find a link to its on-line
documentation.

6/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

3 Detecting the chessboard
In this first exercise we want to build a program that given an image as input, detect the
chessboard in the image and draw the detected chessboard corners (see Figure 2). This will be
the first step towards our camera tracker as we will use the chessboard as a marker on top of
which we will render a virtual object. To this end, we will rely on the OpenCV function for
detecting calibration patterns. Currently OpenCV supports three types of object for calibration
(see Figure 3):

• Classical black-white chessboard

• Symmetrical circle pattern

• Asymmetrical circle pattern

Figure 2: Example of expected output. The OpenCV function detects the corners of the chess-
board, which are marked with a cross surrounded by a circle (⊗). The size of the pattern (in
terms of corners) is given by the number of inner corners of the chessboard: in the example
above the size of the chessboard is 8 × 6 (width×height)

Assignment
Complete the program in src/tp/checkerboard.cpp . The program takes as input the size of
the pattern to dectect, the type of pattern and the name of the image to process. Here is the
complete documentation:

Detect a chessboard in a given image
Usage: ./bin/checkerboard -w <board_width> -h <board_height> -pt chess <image file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
[-pt <pattern=[circles|acircles|chess]>] # the type of pattern: chessboard or circles’ grid
<image file>

For example, to process the image data/images/left01re.jpg we can launch the program
with (from build directory):

./bin/checkerboard -w 8 -h 6 ../data/images/left01re.jpg

7/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

(a) A 9 × 6 chessboard (b) A 5×4 circle pattern (c) A 5×6 asymmetric circle pattern

Figure 3: Some examples of the 3 type of patterns that can be used for calibration purposes by
OpenCV

Look at Figure 3 to see how the size of the pattern is computed in terms of corners. In
data/images/ you can find other test images (not all the images give a positive detection).

The program imports the function that detects the chessboard from src/tp/tracker/utility.cpp .
This will be the first function we will add to our camera tracker.

1. Complete the function detectChessboard in src/tp/tracker/utility.cpp that, given
an input image, the type and the size of the pattern, detect the chessboard in the image
(if any) and return a boolean value to confirm the detection and the list of detected
corners/points of the pattern.

2. Complete the main with the call to detectChessboard and the code to display the image.
Use the second tutorial of OpenCV Load and Display an Image as reference to create the
window and display the image.

When you run the program you can see the detected chessboard. Also, the detection time
will be printed on the shell. As you can see it is around ∼ 20ms, which means the detection
algorithm can detect the chessboard up to a rate of 50 frame per seconds.

Hints
• The parsing of the input arguments is already implemented with the function parseArgs ,

nothing to be done there. Also you will find another function help that prints on the
screen the help of the program. All the programs we are going to implement in these TP
have similar functions, you don’t have to modify them.

• The functions and the pieces of code you have to implement or add are normally pre-
ceded by a comment explaining what you have to do and which function you have to call.
Normally these comments are surrounded by this pattern /****************/ .

• An enumerative type is already defined in tracker/tracker/utility.hpp containing the
3 different calibration patterns

1 enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };

They can be used to call the relevant detection functions (c.f . next item).

• Depending on the type of the input pattern you use either the findChessboardCorners or
the findCirclesGrid function. For both of them you pass on the current image, the size
of the board and you’ll get back the positions of the patterns. Furthermore, they return a
boolean variable that states if in the input image we could find or not the pattern.

8/25

http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findchessboardcorners
http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findcirclesgrid

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

• For the chessboard the position of the corners is only approximate. We can improve and
refine their position by calling the cornerSubPix function.

• Finally, for visualization feedback purposes we will draw the found points on the input
image with the drawChessboardCorners function.

9/25

http://docs.opencv.org/2.4.13.4/modules/imgproc/doc/feature_detection.html#cornersubpix
http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#drawchessboardcorners

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

4 Detecting the chessboard on a video
Now that we can detect a chessboard on an image, let’s move one step forward and write a
program that detected the chessboard in a given video stream.

Assignment
Complete the program in src/tp/checkerboardvideo.cpp . The program is very similar to
the previous one, it takes as input the size of the pattern to detect, the type of pattern and the
name of the video to process. Here is the complete documentation:

Detect a chessboard in a given video
Usage: bin/checkerboardvideo -w <board_width> -h <board_height> [-pt <pattern>] <video file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
[-pt <pattern=[circles|acircles|chess]>] # the type of pattern: chessboard or circles’ grid
<video file>

In data/video you can find the video of a chessboard, we will use that video from now on for
all the our programs. For the chessboard detection you can launch:

./bin/checkerboardvideo -w 9 -h 6 ../data/video/calib.avi
There are not many changes to do w.r.t. the previous version:

1. The program will import the function detectChessboard you already developed from
utility.hpp.

2. Complete the main with the code for opening a video and getting the current frame, the
call to detectChessboard, and the code to display the image. Use the OpenCV tutorial
Load and Display a Video as reference.

When you run the program you should notice that the detection works in real-time when the
chessboard is completely visible. On the other hand the detection process is slowed down if one
or more corner of the chessboard are occluded: this is enough to prevent the detection. For now,
we will stick with the tracking by detection paradigm. We will see later how we can improve
the tracking performance.

Hints
• VideoCapture is the class that loads the video and allows to access to each frame.

• At the end of each iteration of the processing loop, the program wait for user input for
10ms: if any key is pressed the program ends.

1 if(waitKey(10) >= 0)
2 break;

For debugging purposes, you can replace it with the following
1 if(waitKey(-1) == ’q’)
2 break;

waitKey(-1) will stop the execution until a key is pressed. If the key Q is pressed
then the program will exit the loop and terminate. Otherwise it will go on with the next
iteration.

10/25

http://docs.opencv.org/2.4.13.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 4: The program has two windows, one showing the original video, the other the rectified
version (if the chessboard is detected).

5 Perspective rectification
In order to estimate the position of the camera w.r.t. the chessboard we need to estimate the
homography relating the 3D plane of the chessboard and the plane image. In this exercise we
will modify the previous code in order to estimate the homography in a robust way every time
the chessboard is detected. In order to verify that the homography is well estimated, we will use
the homography to remove the perspective distortion of the chessboard. If the homography is
well estimated, in the rectified image the chessboard should appear as seen “from above” (c.f .
Figure 4).

Assignment
Complete the program in src/tp/checkerboardvideoRectified.cpp . The program has the
same synopsis of the last program of Section 4:

Usage: bin/checkerboardvideoRectified -w <board_width> -h <board_height> [-pt <pattern>] <video file>

The program must create 2 windows, one to display the original video, the other the rectified
version (provided that the chessboard is detected).

1. Again, the program imports the function detectChessboard that you have implemented
earlier from tracker/utility.hpp.

2. Complete the main with the code for creating 2 windows, opening a video and getting the
current frame, and the call to detectChessboard.

3. In order to estimate the homography we need the coordinates of the points on the image
plane and the corresponding points on the chessboard. For the formers we will just use
the corner detected with detectChessboard. For the points on the chessboard, we can
fix an arbitrary reference system on the chessboard and generate the points accordingly:
for example we can consider the top left corner of the chessboard as the origin with the
x-axis and the y-axis oriented as depicted in Figure 5
Complete the function calcChessboardCorners that you find in src/tp/tracker/utility.cpp ,
which generates the points on the chessboard (for the purpose of this exercise they will be
2D points).

11/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 5: An arbitrary reference system on the chessboard.

4. With the correspondences we have found, estimate the homography in a robust way using
the RANSAC algorithm

5. Once the homography is estimated, apply the homography to the current frame in order
to remove the perspective distortion.

6. Finally display the two images, the original one and the rectified one, inside the relevant
window.

Hints
• To estimate the homography OpenCV provides the function findHomography. Look at the
online documentation for the various parameters. Remember to pass the flag CV_RANSAC
to use a robust estimation method.

• Remember: if you write H = findHomography(x1, x2...) then x2 = H x1. The
parameters x1 and x2 can be invariably the image points and the points on the chessboard,
or viceversa. You will just obtain two different homographies which are one the inverse of
the other, i.e.

findHomography(x1, x2...) == (findHomography(x2, x1...))−1 .
In order to choose the order, consider which transformation you have to pass to warpPerspective
later. . . (c.f . next hint).

• To remove the perspective distortion using the estimated homography we can use the
function warpPerspective which applies a perspective transformation to an image. Use
the default parameters for the borders and the interpolation.

12/25

http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findhomography
http://docs.opencv.org/2.4.13.4/modules/imgproc/doc/geometric_transformations.html#warpperspective

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

6 Camera calibration
In order to build a camera tracker that estimates the camera position w.r.t. the chessboard we
need to know the intrinsic parameters of the camera. In particular we will need to estimate the
calibration matrix K and the distortion coefficients d of the optical distortion model. OpenCV
provides some functions that allow to calibrate the camera from a set of images (or a video) of
a calibration pattern. In order to calibrate the camera we will rely on a program that comes
with OpenCV. If you need a refresh about the calibration theory and the internal parameters of
the camera, you can read the tutorial Camera Calibration with OpenCV.

Assignment
For the task of calibrating the camera you are not required to write any code. We will instead use
the program src/tp/calibration.cpp that is provided by OpenCV. The program has many
options and can work with different input. We will use the video data/video/calib.avi as
input. The program will load the video and will try to detect a chessboard. When a certain
number of positive detections are achieved, it will use the detected points on the chessboard to
estimate the camera parameters, and then it will save them in a file.

1. Compile the program and run it once without passing any arguments. It will display its
usage. The parameters between square brackets ([]) are optional.

2. We want to use our data/video/calib.avi to calibrate the camera. We need to call the
program passing the following options:

• the size of the board (-w and -h) as we did for the previous programs
• we want to use a video as input (-V option)
• we want to set the number of positive detection to use in order to calibrate the camera
(-n option), e.g. 10.

• we want the program to take a shot at least every 1500 ms (-d option)
• we want a simplified model for the optical distortion without the tangential compo-
nent (-zt option)

• we want to specify the name where the intrinsic parameters are saved (-o option);
the output file can be either an xml file, e.g. calib.xml.

3. When you launch the program it will detect the chessboard on the video, but, in order to
start the calibration process you need to press G .

4. At the end of the process you should have the xml file in your directory. The content
should look like this

<?xml version="1.0"?>
<opencv_storage>
<calibration_time> "Mon 21 Oct 2013 07:16:31 PM CEST" </calibration_time>
<image_width>640</image_width>
<image_height>360</image_height>
<board_width>9</board_width>
<board_height>6</board_height>
<square_size>1.</square_size>
<!-- flags: +zero_tangent_dist -->

13/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

<flags>8</flags>
<camera_matrix type_id="opencv-matrix" >

<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>

4.8428509485313901e+02 0. 3.2009932991075260e+02 0.
4.8365482958967795e+02 1.6283922248766723e+02 0. 0. 1.</data></camera_matrix>

<distortion_coefficients type_id="opencv-matrix"
<rows>5</rows>
<cols>1</cols>
<dt>d</dt>
<data>

-9.3396873795605365e-02 2.3550692129669618e-01 0. 0.
-3.8791765186556898e-01</data></distortion_coefficients>

<avg_reprojection_error>1.7869347177607542e-01</avg_reprojection_error>
</opencv_storage>

The calibration matrix K is stored inside the <camera_matrix> tag and the distortion
coefficients are stored inside the <distortion_coefficients> tag. We will see soon how
to recover them from the file and use them for our purposes.

6.1 Removing the optical distortion
Once we have calibrated the camera, we can use the intrinsic parameters and the distortion
coefficients to remove the optical distortion from the video.

Assignment
We want to implement a program that given a video and the relevant camera parameters as
input, will remove the optical distortion and show the undistorted image. Also we want to be
able to see the image difference between the distorted and undistorted image (c.f . Figure 6).
The user must be able to switch between each image using the key O for the original image,
U for the undistorted version and D for the image difference.

Complete the program in src/tp/checkerboardvideoUndistort.cpp . The program syn-
opsis is:
Undistort the images from a video
Usage: ./bin/checkerboardvideoUndistort -c <calib file> <video file>

-c <calib file> # the name of the calibration file
<video file> # the name of the video file to process

where the calibration file is the file we have generate with the calibration process.

1. Complete the local function loadCameraParameters that loads the parameters from the
xml file.

2. Complete the main with the usual code to create the window and open the video file

3. Complete the code inside the loop applying the undistortion and computing the image
differece.

When running the program, if you switch from the original image to the undistorted version you
should notice that the image “moves”, changes more on the region far from the center of the

14/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 6: The difference image between the original and the distorted one. Brighter pixels
correspond to higher difference between the two images.

image, where the center of distortion lies. This is because the distortion varies with the square
of the distance from the distortion center. You can see this effect in the difference image: the
center of the image is generally darker than the outer regions, since the difference between the
distorted and undistorted version is smaller.

Hints
• In order to load data from a xml file you can take a look to the quick tutorial File Input
and Output using XML and YAML files. Also you can refer to the class FileStorage.

• We just need to read the calibration matrix stored in the <camera_matrix> tag and the
distortion coefficients stored in the <distortion_coefficients> tag of the xml calibra-
tion file saved earlier.

• In order to undistort the image OpenCV provides the function undistort.

• In order to compute the image difference OpenCV provides the function absdiff

15/25

http://docs.opencv.org/2.4.13.4/modules/core/doc/xml_yaml_persistence.html#filestorage
http://docs.opencv.org/2.4.13.4/modules/imgproc/doc/geometric_transformations.html#undistort
http://docs.opencv.org/2.4.13.4/modules/core/doc/operations_on_arrays.html#absdiff

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 7: The class diagram for the camera tracker based on the tracking by detection approach.

7 The camera tracker
We have now most of the functions we need to build our first camera tracker. This first version
of the camera tracker implements a tracking by detection method: each frame is processed
independently to detect the chessboard and eventually compute the camera pose. We will use
two main classes:

• Camera , which contains all the information about the camera (calibration matrix, distor-
tion coefficients. . .). It has one main function and 3 members:

– init() , is the function that initializes the class loading the camera parameters from
a file.

– matK , distCoeff , imageSize are the member variables containing the calibration
matrix, the distortion coefficients and the size of the image, respectively.

• ChessboardCameraTracker that is in charge to process the image and compute the pose
of the camera w.r.t. the chessboard. Since we will implement two versions of the camera
tracker, we use a virtual class ICameraTracker that is the base class for the camera
tracker algorithms that we are implementing (c.f . Figure 7). As you can see there are two
main methods:

– process() , is the main method that takes a frame as input and return the pose of
the camera if a chessboard is detected.

– getPose() , it just returns the estimated pose for the camera.

Assignment
In order to build the camera tracker you have to complete some functions of Camera and
ChessboardCameraTracker and the main file src/tp/tracking.cpp , which actually use the
two classes for displaying the reference frame on the detected chessboard. The program takes
as usual the chessboard size, the calibration file and a video as input and it display the video

16/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

with the augmented reference frame:

Detect a chessboard and display an augmented reference system on top of it
Usage: ./bin/tracking -w <board_width> -h <board_height> -c <calib file> <video file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
-c <calib file> # the name of the calibration file
<video file> # the name of the video file

1. Complete the Camera class in src/tp/tracker/Camera.cpp by implementing the method
init() that takes as input the name of a file containing the calibration parameters and
it loads them in the member variables.

2. Implement the function decomposeHomography() in src/tp/tracker/utility.cpp :
the function takes as input a homography matrix (3 × 3) and the camera calibration
matrix, and it returns the 3 × 4 pose matrix.

3. Complete the Tracker class in src/tp/tracker/ChessboardCameraTracker.cpp by im-
plementing the method process() :

• The function takes as input the current frame, the camera parameters, the size and
the type of chessboard and it returns true if the chessboard is detected, along with the
pose of the camera. It also modifies the input image to correct the optical distortion.

• The function is very similar to what we saw in Section 5, it detects the points on
the chessboard, computes the homography and then decomposes it to compute the
camera pose. Remember to undistort the image first.

4. Complete the function drawReferenceSystem() in src/tp/tracker/utility.cpp : the
function takes as input an image, the camera parameters, the camera pose and it draws a
reference system according to the camera pose (c.f . Figure 8).

5. Complete the function main in src/tp/tracking.cpp :

• It initializes the object cam , an instance of the Camera class, with the calibration file
we generated earlier,

• It loads the input video and processes each frame of the video by calling the process()
method of the object tracker , an instance of the ChessboardCameraTracker class.

• If the tracker detects the chessboard it draws the reference system in the image.

6. The reference system should look like the one in Figure 8... You may want to apply a
proper rotation to the 3D points you draw to get a similar reference system.

Hints
• Remember the homography decomposition: we can estimate an homography H up to a
scale factor of the real one, i.e. H =

[
h1 h2 h3

]
= λ K

[
r1 r2 t

]
. The simplest way

to decompose is to consider: 
r1 = 1

λ K -1h1
r2 = 1

λ K -1h2
r3 = r1 × r2
t = 1

λ K -1h3

17/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 8: The reference system drawn on top of the chessboard.

with
λ =

∥∥∥ K -1h1
∥∥∥ =

∥∥∥ K -1h2
∥∥∥ .

• In order to undistort the image OpenCV provides the function undistort().

• In order to draw the reference system we can draw 3 lines corresponding to the image of
the 3 axes. We know the 3D coordinates of the points on the axis, so we can project them
onto the image and draw the lines connecting them:

– To project the points you can use the function myProjectPoints in utility.cpp
which is a wrapper of the original OpenCV function projectPoints(): it takes the
same arguments, except for the rotation rvec and translation tvec that are merged
into a single matrix (the pose matrix).

1 /**
2 * Wrapper around the original opencv’s projectPoints
3 * @param[in] objectPoints the 3D points
4 * @param[in] poseMat the pose matrix
5 * @param[in] cameraMatrix the calibration matrix
6 * @param[in] distCoeffs the distortion coefficients
7 * @param[out] imagePoints the projected points
8 */
9 void myProjectPoints(cv::InputArray objectPoints,

10 const cv::Mat &poseMat,
11 cv::InputArray cameraMatrix,
12 cv::InputArray distCoeffs,
13 cv::OutputArray imagePoints);

– For drawing the line and putting the text for the axis you can use the OpenCV
functions line() and putText().

18/25

http://docs.opencv.org/2.4.13.4/modules/imgproc/doc/geometric_transformations.html#undistortpoints
http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#projectpoints
http://docs.opencv.org/2.4.13.4/modules/core/doc/drawing_functions.html?highlight=line#line
http://docs.opencv.org/2.4.13.4/modules/core/doc/drawing_functions.html?highlight=line#puttext

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 9: The class diagram for the camera tracker based on the feature tracking approach.

8 The KLT version
As you may have noted, the main problem with the tracking by detection approach is that
occlusions prevent the detection of the chessboard and thus the estimation of the camera pose.
This is a limit of the approach due to the fact that the frames are processed independently,
without, e.g., using any information from the previous frame. A different approach for camera
tracking based on markers is the detect and track: the marker is detected once and then its
position in the image is tracked along the subsequent frames. In this exercise we will build a
camera tracker that detect the chessboard and then track the corners using the Kanade-Lucas-
Tomasi method (KLT).

We will implement a new class, ChessboardCameraTrackerKLT , which is again a derived
class of the base class ICameraTracker (c.f . Figure 9). It has a specialized method process()
for detecting and tracking the chessboard, and three new member variables:

• _prevGrey always contains the grey level version of the last frame. It has to be update
at the end of each processing step.

• _corners contains the detected corners of the chessboard that are tracked from one frame
to another.

• _objectPoints contains the 3D points of the chessboard.

Assignment
In order to build the camera tracker you have to implement the function process() of the class
ChessboardCameraTrackerKLT and the main in src/tp/trackingKLT.cpp , which is basically
the same as in Section 7 but using a KLT tracker. The synopsis is basically the same:

19/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Detect and track a chessboard with the KLT algorithm and display the reference system on top of it
Usage: ./bin/trackingKLT -w <board_width> -h <board_height> -c <calib file> <video file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
-c <calib file> # the name of the calibration file
<video file> # the name of the video file

1. Complete the process() function so that:

• The tracker will try to detect the chessboard if it is tracking too few points (or none),
e.g. it is tracking less than 10 points. In this case it will try to detect the chessboard
and eventually compute the camera pose.

• Otherwise it will track the points using the optical flow algorithm. When the new
points are estimated, the position of the camera is computed using these points. The
optical flow algorithm returns the position of the features on the new image along
with a vector status containing either 0 or 255 to indicate whether the estimate for
the new point position is reliable or not: remember to filter out those points having
the corresponding status element set to 0.

• For the camera pose we will use the PnP algorithm with RANSAC.

2. Complete the function main in src/tp/trackingKLT.cpp : we will now use a tracker
object from the ChessboardCameraTrackerKLT.

Hints
• The detection part is the same as before, but this time, as we are using PnP to compute
the pose, we need the points on the chessboard as 3D points: complete the function
calcChessboardCorners3D() in utility.cpp that generates the 3D points.

• To track the points using the optical flow you can use theOpenCV function calcOpticalFlowPyrLK()

• As said above, remember to filter the points having a status set to 0: just skip those
points when copying the new positions in _corners (c.f . the comments in the code).

• To compute the pose with the PnP algorithm you can use mySolvePnPRansac in utility.cpp,
which is a wrapper of the original OpenCV function solvePnPRansac(): it is a simplified
version which takes the same arguments, except for the rotation rvec and translation tvec
that are merged in a single matrix (the pose matrix).

1 /**
2 * Wrapper around the original opencv’s solvePnPRansac
3 *
4 * @param[in] objectPoints the 3D points
5 * @param[in] imagePoints the image points
6 * @param[in] cameraMatrix the calibration matrix
7 * @param[in] distCoeffs the distortion coefficients
8 * @param[out] poseMat the pose matrix
9 * @param[out] the list of indices of the inliers points [optional]

10 */
11 void mySolvePnPRansac(cv::InputArray objectPoints,
12 cv::InputArray imagePoints,
13 cv::InputArray cameraMatrix,
14 cv::InputArray distCoeffs,
15 cv::Mat &poseMat,
16 cv::OutputArray inliers=cv::noArray())

20/25

http://docs.opencv.org/2.4.13.4/modules/video/doc/motion_analysis_and_object_tracking.html?highlight=calcopticalflowpyrlk#calcopticalflowpyrlk
http://docs.opencv.org/2.4.13.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=solvepnpransac#solvepnpransac

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

9 Adding the OpenGL rendering
Now that we have built a reliable camera tracker, we can concentrate on the rendering part. We
will use OpenGL to render the 3D object on top of the chessboard.

So far we have seen how to render a virtual object using the OpenGL pipeline. Now we have
to render the virtual object over each frame of the video. Here is a simple way to do it: at each
frame we draw a rectangle in front of the OpenGL camera and place on top of it the current frame
as texture. This will just render the frame in an OpenGL window. This is our “background”
image and on top of that we will draw the virtual object as usual using the information about
its pose and orientation given by the camera tracker.

One question should arise: if we render a rectangle in front of the camera how can the camera
“see” the virtual object if it is occluded by the rectangle itself? Here comes the trick: we can
at first draw the rectangle with the texture of the current frame and then clear the z-buffer of
the image (i.e. reset all the values) so that any object we draw next will overdrawn the relevant
part of the frame.

You can have a look at the file src/tp/videoOGL.cpp . It reads a video file as input and
it displays it in an OpenGL window. You can compile it and run with, e.g., the video of the
chessboard.

If you look at the code you should recognize the familiar functions needed to render objects
and textures in OpenGL. In particular:

• glInit does the initialization and it binds the integer gCameraTextureId to an OpenGL
texture

• updateTexture is the function that constantly updates the texture gCameraTextureId
with the current video frame contained in the OpenCV Mat object gResultImage .

• drawBackground is the function that actually draws the rectangle with the current frame
texture in front of the OpenGL camera.

• In displayFunc you can see the call to the function drawBackground followed by the call
to glClear(GL_DEPTH_BUFFER_BIT) that resets all the depth values of the pixels.

• Finally, in main , you can see that the OpenGL pipeline is a bit different than the usual:
instead of calling glutMainLoop() to enter in the OpenGL processing loop, the program
processes the video frames as done so far in OpenCV and for each frame it calls the function
glutMainLoopEvent() . This GLUT function forces the call to the display callback that
refreshes the window.

We can use this program as template to build the program that renders the virtual objects
with OpenGL.

Assignment
Complete the file src/tp/videoOGLTeapot.cpp : first add the rendering of a virtual object in
a fixed position of the image, and then t attach the camera tracker to estimate the correct pose

21/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

of the object in the scene. The program takes the usual input parameters
Detect a chessboard in a given video and visualize a 3D object on top of it
Usage: videoOGLTeapotTP -w <board_width> -h <board_height> -c <calib file> <video file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
-c <calib file> # the name of the calibration file
<video file> # the name of the video file

The main difference between this version and the previous one is the two global variables
gModelViewMatrix and gProjectionMatrix : these are the two (pointers to the) matrices
that contains the OpenGL model-view and projection matrices, respectively. In order to render
the teapot we need to set, for each video frame, the model-view matrix for the virtual object:
this is given by the camera pose estimated by the tracker. At the same time we also need
the projection matrix that models the camera projection, which depends on the calibration
parameters of the camera. We will see later how to work with these matrices.

First try to display a teapot over the image in fixed given position and then attach the
camera tracking in order to render it in the proper position (c.f . Figure 10). Here some steps
you can follow:

1. complete the glInit() function in order to enable/disable the depth test, the shading,
the lights, the material for the teapot and the projection matrix.

2. complete the displayFunc() function: here you have to set the model-view matrix and
draw the teapot. Remember to switch the lighting on and off when drawing the background
and the teapot.

3. complete the main() function: you need to define the OpenGL projection matrix using the
calibration parameters of the camera and the model-view matrix, for now with a default
value for each frame.

4. now if you compile2 and run the program you should see the teapot rendered over the
video frames (c.f . Figure 10.(a)).

5. the last step is to attach the camera tracker to estimate the pose and render the teapot
accordingly: add a camera tracker object (with KLT algorithm for the feature tracking),
add the call to process inside the loop and assign the model-view matrix to the estimated
camera pose matrix.

Hints
• So far, in order to set the projection and the model-view matrix we always applied some
OpenGL transformations like glRotatef() or gluPerspective(). OpenGL offers another,
more direct method to set the matrices. The function glMultMatrixf() (here the doc)
allows to multiply the current transformation matrix by a specific transformation matrix.
Since in our case the model-view and projection matrix are given already in the proper
format we can set them by first setting them to the identity and then by multiplying them
by the respective matrices.

2The first time you compile the code you will notice that another library will be downloaded and built. This
is the GLM library we will use in the last exercise. Once it has done, you can run cmake .. again in your build
directory to avoid it is compiled again every time you compile your source code.

22/25

http://www.opengl.org/sdk/docs/man2/xhtml/glMultMatrix.xml

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

Figure 10: The teapot rendered just over the video frames in a fixed position (a), and then on
top of the chessboard using the camera tracker (b).

• In order to set the projection matrix use the method Camera::getOGLProjectionMatrix()
defined in Camera class: this allows to build an OpenGL projection matrix starting from
the estimated internal parameters of the camera. For the near and far clipping plane you
can use a value of 10 and 10000, respectively.

• In order to set the model-view matrix to a default value, you can find in main that a
default “dummy” matrix is declared with some position values (dummyMatrix). We can
make the gModelViewMatrix pointer point to the data field of this default matrix. It is
not straightforward, thought: OpenGL manages matrices in different way than OpenCV.
OpenGL uses a column-major order to store the matrix, i.e. the data is stored in the linear
array column by column, so that the first element of the array corresponds to the first
element of the first column, the second element corresponds to the second element of the
first column and so on. OpenCV, instead, uses a row-major order to store data (the second
element of the array is the second element of the first row and so on. . .). Therefore, in
order to convert one system to another, one has to take the transpose version:

– look at the code around line 410, you see how the conversion is made: the OpenCV
matrix dummyMatrix is first transposed, cast to a Mat class, and then the field data
passed to the pointer (with the casting to float*, for the correct data type).

23/25

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

10 Rendering an OBJ 3D object
The last step of this TP is to replace the usual OpenGL teapot with a generic 3D object loaded
from an Wavefront OBJ file. You are already familiar with the OBJ format for storing a 3D
model. For this TP we will use the open-source library GLM (the webpage) which provides a
more complete interface to the OBJ format (i.e. it manages textures, materials etc.). You can
find the library in 3rdparty/glm 3.

The library provides a structure, GLMmodel , that contains all the data of the 3D model and
the following functions (you can also check the available functions with the relevant documen-
tation in 3rdparty/glm/build/include/glm.h):

• GLMmodel* glmReadOBJ(const char* filename) loads the 3D models from the OBJ file
and returns the pointer to the relevant structure.

• GLfloat glmUnitize(GLMmodel* model) is used to scale the model to the unit size, i.e.
after the call to this function the model is scaled to be contained in a unitary cube.

• GLvoid glmScale(GLMmodel* model, GLfloat scale) scales the model to the given
factor

• GLvoid glmDraw(GLMmodel* model, GLuint mode) draws the model using the relevant
OpenGL primitives

Assignment
Modify src/tp/videoOGLTracking.cpp to display an OBJ file that is loaded from file instead
of the teapot. The filename for the OBJ can be passed with the -o option. The complete
synopsis of src/tp/videoOGLTeapot.cpp is indeed:

Detect a chessboard in a given video and visualize a 3D object on top of it
Usage: videoOGLTeapotTP -w <board_width> -h <board_height> -c <calib file> <video file>

-w <board_width> # the number of inner corners per one of board dimension
-h <board_height> # the number of inner corners per another board dimension
-c <calib file> # the name of the calibration file
[-o <obj file>] # the optional obj file containing the 3D model to display
<video file> # the name of the video file

1. declare a global variable model as a pointer to GLMmodel: this will use through the code
to load and display the 3D model

2. now we need to load the model: in main , before the processing loop load the model using
glmReadOBJ(), the filename is in objFile . If any error happens when loading the file,
the function will return NULL.

3. if the model is loaded, scale it to the unit size and then scale it to the same scale you
used for the teapot. If the model is not loaded, just print a warning on the screen: we will
display the teapot instead.

3The library will be downloaded, built and installed the first time you try to compile a source depending on
it. Once it is done, you can run cmake .. again in your build directory, so that it won’t be recompiled every
time you compile your source code

24/25

http://devernay.free.fr/hacks/glm/

[git] • Branch: master @ 655fb61 • Release: v2022.1.0 (2022-10-27)
Head tags: v2022.1.0)

Toulouse INP–ENSEEIHT Vision par Ordinateur, 2022-2023

4. we can now draw the model: in displayFunc check whether we have a model and then
draw it, otherwise draw the teapot as usual.

5. before running the code you need to set the path to the static library libglm.so: in your
shell you need to run the following command:
export LD_LIBRARY_PATH=/home/<yourhome>/<path/to/code>/3dparty/glm/build/lib:$LD_LIBRARY_PATH

This has to be done once, at the beginning of any shell session4.

6. in data/models you can find some 3D model with textures to test the program with.

Hints
• Here is the documentation for glmDraw : you may want to pass GLM_SMOOTH and GLM_TEXTURE
as drawing mode.

1 /* glmDraw: Renders the model to the current OpenGL context using the
2 * mode specified.
3 *
4 * model - initialized GLMmodel structure
5 * mode - a bitwise OR of values describing what is to be rendered.
6 * GLM_NONE - render with only vertices
7 * GLM_FLAT - render with facet normals
8 * GLM_SMOOTH - render with vertex normals
9 * GLM_TEXTURE - render with texture coords

10 * GLM_FLAT and GLM_SMOOTH should not both be specified.
11 */
12 GLvoid glmDraw(GLMmodel* model, GLuint mode);

4Otherwise you can append the command at the end of your ∼/.bashrc file so that the path is automatically
set every time you launch a new shell

25/25

	Objectives
	References

	The provided code environment
	Building the code with CMake
	Using your personal machine
	Windows
	Linux and OSX

	Using the TP machines
	Creating project files to work in Eclipse

	Quick start with OpenCV

	Detecting the chessboard
	Detecting the chessboard on a video
	Perspective rectification
	Camera calibration
	Removing the optical distortion

	The camera tracker
	The KLT version
	Adding the OpenGL rendering
	Rendering an OBJ 3D object

