
ENSEEIHT — ModIA

High performance scientific computing

2022-2023

TP 2 : Using MPI to efficiently distribute GEMM
computations

� To set up the environment, you have to execute in a terminal the command
source init.sh

1 Introduction

1.1 Message Passing Interface (MPI)

The MPI standard emerged in the beginning of the 90s to consolidate a frame to use network-connected
devices. Those architectures were prominent as this time as they allowed to draw more computing
power from multiple single-core nodes. MPI is implemented in several libraries - Openmpi 1, intelMPI 2

and MPICH 3 to name a few - and new implementations still get created to further enhance the
standard, especially towards large-scale architectures of tens of thousands of multi-core nodes.

During this class, we will use SimGrid 4 which is an emulator of MPI. This emulator allows the
simulation of the network to the extend that you are not limited by the machines available in the
classroom. We will focus on simpler routines such as MPI (i)Recv, MPI iSend, MPI Ssend, MPI Bcast

and core concepts of MPI such as Communicators.

The compilation of your MPI application is handled in the provided Makefile through the smpicc

wrapper. In order to launch an MPI application, one simply needs to call smpirun /path/to/mpi/app

with eventual arguments. All of this tinkering is made easier thanks to scripts handed out with this
subject.

1.2 Distributed memory General Matrix Multiplication (GEMM)

The sequential GEMM routine is a principal routine in any scientific applications. Its single-core
implementation is available through BLAS libraries as an efficient and necessary building block of more
complex operations as found, for instance, in LAPACK libraries. Despite being a simpler mathematical
operation, its numerical implementation is not trivial as it is tied with the hardware used to
run the floating-point instructions.

1https://github.com/open-mpi/ompi
2https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.htm
3https://github.com/pmodels/mpich
4https://framagit.org/simgrid/simgrid

1

https://github.com/open-mpi/ompi
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.htm
https://github.com/pmodels/mpich
https://framagit.org/simgrid/simgrid


High performance scientific computing

1.2.1 2D Block-Cyclic distribution of dense matrices

We are interested in measuring the performances of various GEMM algorithms in a distributed memory
setting. We do not focus on multicore applications and we will only use one core per node (EXPORT
{MKL,OMP} NUM THREADS=1). We restrict ourselves to the routine applied to dense matrices of single
precision floats (float). Matrices will be distributed over the network through an usual pattern : the
2D-Block Cyclic (2DBC) way.

For convenience, each block in a matrix will be a square block of dimension b and we will assume
each dimension of a matrix is divisible by b. The 2DBC pattern means that a given Ai,j block will be
stored on the memory of the node q ∗mod(i, p) +mod(j, q) if the nodes are arranged locally on a p× q
grid. Each node can be described by its position r × c.
You will find an implementation of this representation in the source files in ./src/dsmat.h. Figure 1
describes the 2DBC pattern for a 40× 50 matrix with a blocking of 10 stored on a p× q = 3× 2 grid
of 6 nodes.

: ×0 : ×1 : ×0 : ×1 : ×0

0× :

1× :

2× :

0× :

A00 A01 A02 A03 A04

A10 A11 A12 A13 A14

A20 A21 A22 A23 A24

A30 A31 A32 A33 A34

⇐⇒

A:0, A:2, A:4 A:1, A:3

A0:, A3:

A1:

A2:

0 = 0× 0 1 = 0× 1

2 = 1× 0 3 = 1× 1

4 = 2× 0 5 = 2× 1

Figure 1: A split matrix distributed on nodes ⇐⇒ the grid of nodes and their affected column/row
combination of blocks

1.2.2 Some notations

GEMM is standardized as the following operation

C = αopA(A)× opB(B) + βC

where op are either identity or transposition, α and β scalar and A,B,C matrices. We will focus on
a simplification of this operation by setting α = 1, β = 0, opA = opB = Id hence we will compute

2



High performance scientific computing

C = A×B. C is a m× n matrix and A and B share a dimension k. We decide that m = n = k as a
further simplification.

Using the 2DBC pattern, GEMM can be described as a set of block-wise operations that can be
identified with the (i, j, l) triplet : efficiently executing GEMM using distributed memories is a matter
of assigning, scheduling and executing the computations of Ci,j = Ci,j +Ai,l×Bl,j, ∀i, j, l over a given
number of nodes. The algorithms you will implement are based on the following static scheduling
: each node will compute the blocks it owns in the order given by increasing value of l. The sgemm

routine is provided by the Maths Kernel Library (MKL) BLAS library : we assume such a routine is
as efficient as the hardware allows.

2 Exercises

The section 3 goes through some declarations of src/utils.h and src/dsmat.h that could prove
useful to tackle the following exercises.

Figure 3 shows the transmissions of blocks of A:,l and Bl,: for a given value of l. You can observe that
the blocks of A are transmitted row-wise and the blocks of B column-wise.

The execution trace produced by the algorithms you will be writing can be visualized. By default,
they are named smpi simgrid.trace. These traces can be opened through Vite 5.

Figure 2: Example of a trace opened with Vite

2.1 Blocking peer-to-peer communications (TP)

Using the routines MPI Recv and MPI Ssend, modify the functions p2p transmit A and p2p transmit B

in the source ./src/ex1.c to obtain an algorithm that matches with the pseudocode given in Algo-
rithm 1.

You should measure the performance of your algorithm on several matrices, eventually on several grid
sizes.

5https://gitlab.inria.fr/solverstack/vite

3

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.dffda3
https://gitlab.inria.fr/solverstack/vite


High performance scientific computing

Figure 3: Communication patterns on a 4 × 4 grid for the transmission of one column of A and one
row of B

A

B

0

1

2

3

0

4

8

12

3

7

11

15

1

5

9

13

sender/root receivers

sender/root

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

12 13 14 15

4 5 6 7

0 1 2 3

Here is an example command-line to test your implementation6

n7> smpirun -platform platforms/cluster crossbar.xml -hostfile hostfiles/cluster hostfile.txt -np 4 ./build/bin/main -p 2

-q 2 -n 10 -b 5 --algorithm p2p --niter 2 -c -v

and with the genereration of the trace file
n7> smpirun -platform platforms/cluster crossbar.xml -hostfile hostfiles/cluster hostfile.txt -np 4 -trace ./build/bin/main

-p 2 -q 2 -n 10 -b 5 --algorithm p2p --niter 2 -c -v

6be careful with the copy/paste of the command: you should copy/paste the two lines separately and also check for
the underscore ’ ’

4



High performance scientific computing

2.2 Blocking collective communications (TP)

Using the routine MPI Bcast, modify the functions bcast A and bcast B in the source ./src/ex2.c

to obtain an algorithm that matches with the pseudocode given in 2. As collective communications
operate in communicators, MPI COMM WORLD has been split through the MPI Comm split routine in
order for each node to know a communicator of its row neighbours and a communicator of its column
neighbours.

You should measure the performance of your algorithm on several matrices, eventually on several grid
sizes.

Here is an example command-line to test your implementation
n7> smpirun -platform platforms/cluster crossbar.xml -hostfile hostfiles/cluster hostfile.txt -np 4 ./build/bin/main -p 2

-q 2 -n 10 -b 5 --algorithm bcast --niter 2 -c -v

2.3 Non-blocking peer-to-peer communications (homework)

MPI {Ssend,Recv} return once the communications have been executed on their respective nodes. In
order to allow for computation and communication to overlap, we may use non-blocking communica-
tion patterns. These patterns require the use of MPI Requests to wait or test the execution of a given
communication.

Using the routines MPI Wait, MPI Irecv and MPI Isend, modify the functions p2p i transmit A,
p2p i transmit B and p2p i wait AB in the source ./src/ex3.c to obtain an algorithm that matches
with the pseudocode given in Algorithm 3.

You should measure the performance of your algorithm on several matrices, eventually on several grid
sizes. Try different lookahead values.

Here is an example command-line to test your implementation
n7> smpirun -platform platforms/cluster crossbar.xml -hostfile hostfiles/cluster hostfile.txt -np 4 ./build/bin/main -p 2

-q 2 -n 10 -b 5 --algorithm p2p-i-la --lookahead 2 --niter 2 -c -v

5



High performance scientific computing

3 Documentation

This section describes the two mini-libraries that can be used in this class to implement the algorithms
in a simpler fashion.

3.1 Dense matrices mini-library

./src/dsmat.h provides the type Matrix to describe a matrix of any size. We assume a matrix is
subdivized into blocks of square size b and that a given matrix is of size mb*b × nb*b. Assuming a
matrix X has been instanciated in X, the sub-matrix Xi,j can be accessed through the blocks member
of X through X.blocks[i][j].

Each block is populated with its content (c : assuming x is a block of size b, xi,j can be accessed with
x.c[b*i+j]), who owns it (owner, the (MPI) rank of the owner), as well as the position of the block
in the logical grid of owners (assuming the owners are arranged in a p × q grid, we require x.owner

== q*x.row + x.col). A MPI Request is associated with each block, in case the block is transmitted
via a non-blocking communication.

Routines are provided to fill, scale, copy, ... blocks or complete matrices but you do not have to use
them to complete the exercises. The computation as well as the memory management is handled in
those routines.

3.2 Utilities mini-library (distributed memory part)

Most of the routines in ./src/utils.h are not useful to carry on with the class. The distributed-
memory routines should, however, make the exercises easier to implement.

The exercises require you, among other things, to identify the owning node or the location of a node
in a grid. Each node has a MPI rank on the MPI COMM WORLD communicator that can be obtained
through the function MPI Comm rank.

The position of a node in a p× q logical grid can be extracted using its MPI rank me through either
node coordinates or node coordinates 2i. If one wants to retrieve the MPI rank of a node at
position (i, j) in the logical grid of p× q nodes, the function get node returns such an information.

6



High performance scientific computing

4 Algorithms

Algorithm 1 distributed GEMM algorithm inspired by SUMMA without collective communications

for l = 1, ..., k do
for i = 1, ...,m do

transmit Ai,l to the nodes in my row
end for
for j = 1, ..., n do

transmit Bl,j to the nodes in my column
end for
for i = 1, ...,m; j = 1, ..., n do

compute Ai,l ∗Bl,j contributing to Ci,j

end for
end for

Algorithm 2 distributed GEMM algorithm inspired by SUMMA with collective communications

for l = 1, ..., k do
for i = 1, ...,m do

broadcast Ai,l in my row
end for
for j = 1, ..., n do

broadcast Bl,j in my column
end for
for i = 1, ...,m; j = 1, ..., n do

compute Ai,l ∗Bl,j contributing to Ci,j

end for
end for

7



High performance scientific computing

Algorithm 3 distributed GEMM algorithm inspired by SUMMA with communication/computation
overlap

for l = 1, ..., lookahead do
for i = 1, ...,m do

post Ai,l transmission in its row
end for
for j = 1, ..., n do

post Bl,j transmission in its column
end for

end for
for l = 1, ..., k do

if l + lookahead ≤ k then
for i = 1, ...,m do

post Ai,l+lookahead transmission in its row
end for
for j = 1, ..., n do

post Bl+lookahead,j transmission in its column
end for

end if
wait for A:,l and Bl,: to be transmitted
for i = 1, ...,m; j = 1, ...,m do

compute Ai,l ∗Bl,j contributing to Ci,j

end for
end for

8


	Introduction
	Message Passing Interface (MPI)
	Distributed memory General Matrix Multiplication (GEMM)
	2D Block-Cyclic distribution of dense matrices
	Some notations


	Exercises
	Blocking peer-to-peer communications (TP)
	Blocking collective communications (TP)
	Non-blocking peer-to-peer communications (homework)

	Documentation
	Dense matrices mini-library
	Utilities mini-library (distributed memory part)

	Algorithms

