(* This file is generated by Why3's Coq driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. Require int.Int. Require int.Abs. Require int.ComputerDivision. (* Why3 assumption *) Inductive ref (a:Type) := | mk_ref : a -> ref a. Axiom ref_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (ref a). Existing Instance ref_WhyType. Arguments mk_ref {a}. (* Why3 assumption *) Definition contents {a:Type} {a_WT:WhyType a} (v:ref a) : a := match v with | mk_ref x => x end. Parameter n: Z. Parameter r: Z. Parameter i: Z. Axiom H : (i < n)%Z. Parameter i1: Z. Axiom H1 : (i1 = (i + 1%Z)%Z). Parameter r1: Z. Axiom H2 : (r1 = (r + i1)%Z). (* Why3 goal *) Theorem VC_somme : False. Proof. Qed.