
Derivative-free minimization

18/12/2014

1 Derivative-free minimization

In some application it is required to minimize a function whose derivative is
not known or difficult to compute. In such cases a derivative-free minimization
method can be employed. In this exercise we consider a very basic method
for the minimization of a function f(x, y). This method, starts from an initial
candidate (x0, y0) and at each step, tries to approach the function’s minimum
by evaluating the function on p points uniformly distributed on a circle of radius
s around the current candidate and by selecting as a new candidate the one,
among the p, where the evaluation is smallest. s can be seen as a step length
on which depends the speed and accuracy of the method: a small value for s
will lead to a slower convergence but a more accurate solution. This is shown if
Figure 1.

The method i stopped when no further improvement can be achieved, that
is, when f(xk, yk) = f(xk+1, yk+1). In our exercise we will assume that the
function has only one global minimum:

(xmin, ymin) = (0.6971, 0.1317), f(xmin, ymin) = 1.5670

The exercise is about parallelizing the method described above

2 Package content

In the derivative free directory you will find the following files:

• main.c: this file contains the main program which first calls a sequen-
tial routine sequential minimization which computes the minimum of
a (unknown) function using the method described above. The main pro-
gram then calls the parallel routine parallel minimization. The objec-
tive of this exercise is to modify this routine in order to parallelize the
minimization method. Only this file has to be modified for this
exercise.

• aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

1



Current candidate

New candidate

Function minimum

s

Figure 1: Basic functioning of the derivative-feee minimization

The code can be compiled with the make command: just type make inside
the derivative free directory; this will generate a main program that can be
run like this:

$ ./main p s

where p is the number of points around the current minimum where the
function has to be evaluated and s is the step size.

3 Assignment

• Ï At the beginning, the parallel minimization routine is a copy of
sequential minimization. Modify this routine in order to parallelize
the function minimization method described above. Note that all the p
function evaluations performed at each step are independent and can thus
be performed concurrently. This is the source of parallelism that has to
be exploited to achieve the parallelization. Note that, in principle, it is
possible to simply parallelize the loop over the evaluations and protect
with a critical section the update of the global minimum. This, however,
can result in very poor performance especially if the value of p is very
high. For this exercise, instead, a reduction approach will have to be used,
where the reduction operation has to be performed by hand (because no
equivalent is available in OpenMP).

•PReport the execution times for the two implemented parallel versions
with 1, 2 and 4 threads. Analyze and comment on your results.

Is it possible that the parallel and sequential codes follow a different path?
Why?

2



Report your answer in the responses.txt file.

Advice

• If multiple evaluations are computed concurrently by several threads, each
thread will only know the minimum among the subset of points on which
it evaluated the function. These local minima can be stored (along with
the corresponding coordinates) in the xyz array. A method has to be
developed to identify the global minimum among the nth local minima
where nth is the number of threads participating in the computations.
After the evaluations are concurrently executed, one thread computes the
global minimum and communicates it to all the other threads along with
the corresponding (x, y) coordinates.

• Choose relatively small values for p (say, 8 or 16) and relatively big values
for s (say, 0.1) when implementing and validating your parallel version.
Choose, instead, relatively large values for p (for example 128 or 256)
and relatively small values for s (for example 0.0001 or 0.00001) when
evaluating performance.

3


