BE Systemes Concurrents

18/12/2014

This BE is made of five different exercises of different difficulty for a total of
100 points:

Part 1 derivative_free: This exercise is about parallelizing a simple derivative-

free minimization algorithm. 25 points.

Part 2 linked list: This exercise is about parallelizing a linke list traversal
with two different methods. 15 points.

Part 3 matrix multiplication: An exercise on using task dependencies to
parallelize the product of two dense matrices. 15 points.

Part 4 reduction: This exercise is about parallelizing a method which per-
forms a reduction of all the elements of an array. 25 points.

Part 5 synchronization: An exercise on implementing different ways to avoid
data hazards in a parallel code. 20 points.

For each exercise, detailed explanations and instructions are given in the subject
file inside the corresponding directory.

All the exercises include some coding tasks: these tasks consist in writing, com-
piling and executing some OpenMP parallel code and are identified by the key-
board symbol [,

Some exercises also include some analysis identified by the pencil symbol %\
Please write the answer to these questions in the responses.txt file in the
topmost directory of the BE package. Answers can be written in French.

Important

Before starting the exercises, execute the environment.sh script like this:
$ source ./environment.sh

this will set some environment variables needed by the exercises.
Once you have finished execute the pack.sh script like this:

$ ./pack.sh

.pdf



This will generate a package containing the code you have developed and the
responses you have provided and automatically send it to the supervisors.
Before leaving verify with the supervisor in your room that the pack-
age has been received.

Some technical details

e Never use the num_threads clause of the parallel construct but, instead,
choose the number of threads to use with the OMP_NUM_THREADS environ-
ment variable. With this method, the number of threads to be used by
the program can be chosen prior to its execution by typing the command

export OMP_NUM_THREADS=4

for, example, if 4 threads are desired.

e All the parallel codes must work for any number of threads! Even
if you are shown examples with a fixed number of threads, you cannot
assume in your code that the number of threads will always be the same
as in the example.

e OpenMP tasks are very powerful and convenient. However they are also
very heavy and difficult to use. Therefore, unless you are explicitly asked
to use tasks, always try all other options before choosing to use tasks.

e In some exercises you may need to allocate on auxiliary array. This can
be done with the malloc function. For example, the allocation of an array
of integers of size n can be done like this:

int *newarray;
newarray = (int*)malloc(n*sizeof (int));



