Banded Matrix-vector product

1 Banded Matrix-vector product

This exercise is about parallelizing the product of a banded matrix times a dense
vector. A banded matrix A is such that, for a bandwidth b, all coefficients A; ;
with |[¢ — j| > b are equal to zero. This means that on row ¢ only the coefficients

Qg j—byeeey Qi i—15 Qg gy Qj G415 -0y Qi i+b
are nonzero. The example below shows a matrix of size n = 6 with b = 2.

ai1 ai2 13 0 0 0

a1 22 a3 azsa O 0

asz1 az2 az3 az4 azs 0O
0 @i as3 Q44 Qa5 Qup
0 0 as3 asa ass ase
0 O 0 a6,4 a675 CL6,6

If the matrix is very large and the bandwidth relatively small, i.e. b < n,
it may be worth to store the matrix in compact storage, where most of the
zero coefficients are ignored. One option is to store the matrix in an array with
2% b+ 1 rows and n columns such that each row contains a diagonal of the
matrix and each column contains on column. The matrix above can be stored
like this

0 0 a13 ass aszs asp

0 a2 a3 azs as5 asg
ai1 Aa22 33 Q44 AaA55 A66
a1 G322 a43 Gs54 Ggs5 O
az,1 a4 as3 ags O 0

Note that this storage requires some artificial zero coefficients to make all
the column of the same height.

In this exercise we are interested in computing the product y = A x x where
the matrix A is stored in compact form. This can be done either by traversing
the coefficients of the compact form column by column (which corresponds to
traversing the coefficients of A column by column) or row by row (which cor-
responds to traversing the coefficients of A one diagonal at a time). We will
parallelize these two variants of the product.

2 Package content

In the spmv directory you will find the following files:

e main.c: this file contains the main program which first calls the init_data
routine which generates a random sparse matrix of size n and bandwidth
b and initializes with random values the vectors x and y. The program
first performs the matrix vector product using the standard “full matrix”
format (this is only provided as a reference) and then using the two vari-
ants described above which are based on the compact storage. For each
of these two versions, the main program checks that the result is correct.
Only this file has to be modified for this exercise.

e aux.c, aux.h: these two files contain auxiliary routines and must not

be modified.

The code can be compiled with the make command: just type make inside
the band matrix directory; this will generate a main program that can be run
like this:

$./main n b

where n is the number of rows and columns in the matrix and b is the
bandwidth.

3 Assignment

. Parallelize the matmul_compact_row and matmul_compact_diag rou-
tines described above.

For both versions developed above, make sure that the result is correct.

° %\ Report the execution times for the implemented parallel versions with
1, 2 and 4 threads and compare them. What speedup could you achieve?
Which version is faster and why? analyze and comment on your results
for different values of n and b. Report your answer in the responses.txt
file.

