
OpenMP exercise: LU factorization with tasks

1 The LU factorization by block columns

This programming assignment consists in developing two different parallelizations of the matrix PA = LU
factorization by block columns. Assuming that the matrix is of size NB block-columns, this operation can
be roughly described with the following pseudo-code:

for(i=0; i<info.NB; i++){

/* Do the panel */

panel(A[i], i, info);

for(j=i+1; j<info.NB; j++){

/* Do all the corresponding updates */

update(A[i], A[j], i, j, info);

}

}

backperm(A, info);

Note that the result of the factorization (i.e., the L and U factors) overwrites the input matrix A. The steps
of this algorithm are depicted in Figure 1.

Panel

Update

Figure 1: The steps of an LU factorization by block-columns

The routines in the algorithm above are defined as such:

1



• panel(A[i], i, info): this routine computes the reduction (unblocked, inefficient LU factorization)
of a block column i: Pi ∗ A(:, i) = Li ∗ Ui. This routine reads and writes block-column i, i.e.
A[i]. The i scalar and info data structure are only used in read mode.

• update(A[i], A[j], i, j, info): this operation applies to block-column j the transformation com-
puted by the panel operation on block column A[i]. This routine reads block-columns A[i] and
A[j] and modifies block-column A[j]. The i and j scalars and info data structure are only used
in read mode.

• backperm(A, info): this routine applies all the Pi permutations computed in the factorization main
loop to the L factor.

2 Package content

In the lu tasks directory you will find the following files:

• lu seq.c: this file contains a sequential version of the LU factorization by block-columns. This is,
essentially, the same as the pseudo-code reported above. This file should not be modified and only
serves as a reference to compare with the two parallel versions to be developed.

• lu par tasks.c: this file has to be modified to achieve the parallelization. At the beginning this file
is an exact copy of the lu seq.c file and the parallelization is obtained by adding OpenMP directives.

• main.c: this file contains a main program which creates and initializes the matrix and the calls the
sequential and the two parallel versions of the factorization. For each of them the program also
computed the execution time, the performance rate in Gflops/s (billion of floating-point operations per
second) and checks the correctness of the factorization.

• aux.c, auxf.f90, common.h, kernels.c, trace.c and trace.h: this are auxiliary files and should not
be modified.

The main program can be compiled by typing the make command; this will generate an executable file
main that can be run as such:

./main B NB

where B is the size of a block-column and NB is the number of block-columns the matrix is made of.
By compiling with the command make main dbg instead, the resulting program will also print additional

information showing the order in which panel and update operations are executed and which thread executed
each of them. This can be very useful to verify that the operations are executed in the correct order.

3 Assignment

• Ï The objective of this exercise is to parallelize the LU factorization code presented above. This
as to be done using the OpenMP task directive. At the beginning the lu par tasks is a copy
of the lu seq routine; it has to be modified to achieve the parallelization.

•PReport the execution times for the implemented parallel version with 1, 2 and 4 threads and for
different array sizes. Analyze and comment on your results: is the achieved speedup reasonable or not?
Report your answer in the responses.txt file.

Advice

• For verifying the correctness of your code, choose moderate values for B and NB (for example B=20
and NB=5). For analyzing the performance and scalability of your parallelization choose bigger values
(for example, B=100 and NB=40).

• When using the OpenMP task directive, two ways of handling dependencies among tasks consist in
using either the taskwait directive or the depend option of the task directive.

2


