
Stacks

1 Stacks

This exercise is about handling concurrent access to multiple instances of a stack
data structure. In our case, these stacks are used to store scalar integer data
and, thus, a stack is defined by the following simple data structure

typedef struct stackstruct{

int cnt;

int *elems;

} stack_t;

which contains an integer cnt, that defines the number of elements in the
stack, and an array of integers elems that contains the elements in the stack.
The size of the elems array is set to some maximum, predefined value which we
assume big enough for our purpose.

We assume that we have n stacks and that we have a code that randomly
selects one among them and pushes a element on top of it:

for(;;){

/* Get the stack number s */

s = get_random_stack();

if(s==-1) break;

/* Push some value on stack s */

stacks[s].elems[stacks[s].cnt++] = process();

}

The execution is halted when the get random stack routine returns a -1

value. The objective of this exercise is to parallelize this code using different
ways to handle the concurrent access to the stacks.

2 Package content

In the stacks directory you will find the following files:

1



• main.c: this file contains the main program that first calls the stack seq

routine containing the simple code presented above and then calls three
routines stacks par critical, stacks par atomic and stack par locks

that have to be developed and are meant to contain three different paral-
lel implementations of the loop above as described below. Only this file
has to be modified for this exercise.

• aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the stacks directory; this will generate a main program that can be run like
this:

$ ./main n

where n is the number of stacks to be used.

3 Assignment

• Ï At the beginning, stacks par critical, stacks par atomic and
stacks par locks are a copy of stacks seq routine. Modify these routine
in order to parallelize the loop presented above; make sure that potential
data access conflicts are avoided: in the first routine use the OpenMP
critical construct, in the second use the OpenMP atomic construct
and in the third use OpenMP locks to achieve this. The code will rely on
the following important assumptions:

– All the threads must enter the for(;;) loop;

– At each iteration of the loop, the executing thread must push the
element returned by the process routine onto the stack defined by
the get random stack routine; this is the only constraint to respect
for the correctness of the result;

– It is safe to make concurrent (i.e., simultaneous) calls to the get random stack

and process routines.

Make sure that the result computed by the three parallel routines is con-
sistently (that is, at every execution of the parallel code) the same as the
sequential code.

•PReport in the responses.txt file execution times for the sequential
code and the three parallel routines using 1, 2 and 4 threads. Which
parallle version is fastest? Can you explain these results? Report your
comments and answers in the responses.txt.

2



Advice

• Different atomic operations are available in OpenMP: think about which
type is correct for the operation you have to protect.

• OpenMP locks are data structures that have to initialized before being
used like this

/* Declare the lock */

omp_lock_t lock;

/* Initialize the lock */

omp_init_lock(lock);

/* Set the lock */

omp_set_lock(lock);

/* Unset the lock */

omp_unset_lock(locks);

In case you need multiple locks, you may use an array of them:

/* Declare the array of locks */

omp_lock_t *locks;

/* Allocate the array of locks */

locks = (omp_lock_t*)malloc(n*sizeof(omp_lock_t));

...

3


