
Butterfly allreduce

1 Butterfly allreduce

This exercise is about parallelizing the allreduce operation using a butterfly
scheme.

Assume an array of integer values of size n and a complex and time con-
suming operator ⊕ which is associative and commutative. The allreduce
operation is such that

array[i] = array[0]⊕ · · · ⊕ array[n− 1] ∀i

that is, after this operation is performed, all the elements of array contain the
reduction of all the initial elements of array using the oplus operator.

In order to make the understanding and the debugging easier, we will assume,
in this document and in the code, that the size of the array is a power of 2, i.e.,
n = 2l and that the ⊕ operator is just a (time consuming) sum of integers.

The allreduce operation is achieved in l steps where, at each step p, coeffi-
cients are reduced pairwise with a stride of s = 2p. Here is a sequential code
that achieves this

p = 0;

while(p<l){

s = pow(2,p);

for(i=0; i<n; i+=2*s){

for(j=0; j<s; j++){

int r = operator(array[i+j],array[i+j+s]);

array[i+j] = r;

array[i+j+s] = r;

}

}

p+=1;

}

For the case l = 3 the functioning of the method is illustrated below

1

1

6

4

2

2

1

2

3

7

7

6

6

3

3

5

5

13

13

13

13

8

8

8

8

21

21

21

21

21

21

21

21

Step 1 Step 2 Step 3

2 Package content

In the butterfly directory you will find the following files:

� main.c: This file contains the main program. This reads from command
line the parameter l such that the size of the array is n = 2l. It generates
the array, and calls the routine butterly seq which achieves the sequen-
tial butterfly allreduce with the code presented above. Then it calls the
butterfly par which computes the butterfly allreduce in parallel (this
has to be implemented as explained below). Finally it checks if the result
of the parallel allreduce is correct. Only this file must be modified.

� aux.c, aux.h: these two files contain auxiliary routines and declarations
and must not be modified.

The code can be compiled with the make command: just type make inside
the butterfly directory; this will generate a main program that can be run like
this:

$./main l

If l ≤ 5 the original list as well as the result of the butterfly seq and
butterfly par are printed upon execution of the main program.

3 Assignment

� Ï The objective of this exercise is to parallelize the butterfly allre-
duce code presented above. This as to be done using the OpenMP

2

task directive. At the beginning the butterfly par is a copy of the
butterfly seq routine; it has to be modified to achieve the paralleliza-
tion.

�PReport the execution times for the implemented parallel version with
1, 2 and 4 threads and for different array sizes. Analyze and comment
on your results: is the achieved speedup reasonable or not? Report your
answer in the form of comments at the bottom of the main.c file.

Advice

� When developing your code, always work on arrays of small sizes (8, 16 or
32 elements, for example) but when you want to evaluate the performance
use large size arrays (256, 512 or 1024 elements, for example);

3

