
Fully-connected neural networks

1 Problem description

We are interested in the parallelization of the inference phase of a neural network
composed of multiple fully-connected layers of constant size. With each layer
l = 0...L − 1 of the network is associated a weight matrix W l ∈ Rn×n, a bias
vector bl ∈ Rn, an input matrix X l ∈ Rn×m and an output X l+1 ∈ Rn×m in
such a way that

X l+1 = σ
(
W lX l +Bl

)
where B = bleTm, em is a vector of ones of size m and σ an activation function

assumed to be the same for all layers. We assume m ≤ n and all the W , X and
B are partitioned into blocks of size m×m

W11 W12 · · · W1N

W21 W22 · · · W2N

...
...

. . .
...

WN1 WN2 · · · WNN

 ·


X11

X21

...
XN1

+


B11

B21

...
BN1


where N = n/m. In the provided code, all the W and b are stored in the

Layers array of size L such that Layers[l].W and Layers[l].b store W l and
bl, respectively. The X matrices instead are stored in the Datas array of size
L+1 such that Datas[l].X stores X l; Datas[L].X is the output of the network.

The whole inference phase can be performed with the following code:

for(l=0; l<L; l++){

for(i=0; i<N; i++)

for(j=0; j<N; j++){

block_mult(Layers[l].W[i][j], Datas[l].X[j],

Datas[l+1].X[i], m);

}

for(i=0; i<N; i++)

block_bias_act(Layers[l].b[i], Datas[l+1].X[i], m);

}

The first loop on l goes over all the layers; the loops on i and j go over all the
blocks ofW , X andB. The block mult(Layers[l].W[i][j], Datas[l].X[j],

1



Datas[l+1].X[i], m) routine computesX l+1
i1 + = W l

ij×X l
j1. The block bias act(

Layers[l].b[i], Datas[l+1].X[i], m) routine computes σ
(
X l+1

i1 +Bl
i1

)
.

This exercise is about parallelizing the above code.

2 Package content

In the neural network directory you will find the following files:

� main.c: this file contains the main program which first calls the init data

routine which initializes with random values the W , X and b matrices for
all the layers. These matrices are coded as 2D arrays of type block;
each entry W[i][j] is simply a 2D array of size m * m. The main pro-
gram then calls the sequential nn routine executes the above code, the
parallel nn loops and parallel nn tasks routines which contain the
parallelized code to be implemented. After these calls the main program
checks that the output of the parallel routines is the same as that of the
sequential one. Only this file has to be modified for this exercise.

� aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the neural network directory; this will generate a main program that can be
run like this:

$ ./main n m L

where n is the size (number of rows and columns) of the W matrices, m the
number of columns of the X matrices and L the number of layers in the network.

3 Assignment

� Ï At the beginning, the parallel nn loops and parallel nn tasks

are a copy of sequential nn. Modify these routines in order to parallelize
them. The first must be parallelized using the omp for directive and
the second must be parallelized using the omp task directive. In the
second, the depend clause can be used to define dependencies between
tasks, where needed. Make sure that the difference between sequential and
parallel outputs (i.e., the value printed on screen by the compare matrices

routine) is smaller than 10−14.

�PReport the execution times for the implemented parallel versions with
1, 2 and 4 threads and compare them with the sequential routine. What
speedup could you achieve? analyze and comment on your results. Report
your answer in the form of comments at the bottom of the main.c file.

2



Advice

� When using the OpenMP task construct, always think about data scoping
to make sure input data has the correct value upon execution of the task
and returned results do not go out of scope when the task is finished.

� Note that the depend clause allows you to specify dependencies due to
access to single coefficients of an array. For example:

#pragma omp task depend(inout:x[i])

x[i] += 1;

� Choose small values for n, m and L when developing (for example, n =
20, m = 5, L = 1) and big ones when evaluating performance (for exam-
ple, n = 2000, m = 100, L = 10).

3


