
Ring

This exercise is about handling a token sequentially using multiple threads
in a ring. A token is an object, represented by the

⊗
in the figure below, that

has to be processed by T threads, one at a time, sequentially which means that
thread 0 must process it first, then thread 1, then thread 2 and so on. This has
to be repeated for as many times as a given number of loops L.

t0
⊗

t1

t2

t3

t4

t0

t1

⊗
t2

t3

t4

· · · t0

t1

t2

t3

t4⊗
The initial, provided code only works when the number of threads T is equal

to one and, therefore, consists of one simple loop over L where, at each iteration,
the token is processed through the process function:

for(l=0; l<L; l++){

printf("Loop %2d\n",l);

process(&token);

}

1 Package content

In the ring directory you will find the following files:

� main.c: this file contains the main program that first initialises the token,
uses the above code to process it L times and then checks that the result
is correct. Only this file has to be modified for this exercise.

� aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

1



The code can be compiled with the make command: just type make inside
the ring directory; this will generate a main program that can be run like this:

$ ./main L T

wheren L and T are the number of loops and threads, respectively.

2 Assignment

� Ï Extend the provided code to make it work with multiple threads T .
Make sure that that the processing order of the token is respected, i.e., at
every loop thread t processes the token before t+1 and that all operations
of loop l are finished before starting those of loop l + 1. Also, make sure
that this code works for any number of threads T .

2


