
Sparse neural networks

1 Problem description

We are interested in the parallelization of the inference phase of a neural network
composed of multiple sparse layers of constant size. With each layer l = 0...L−1
of the network are associated n neurons (same number for all layers) each having
a value nv and ml synapses where a synapse (i, j, sv) updates neuron j of layer
l + 1 with neuron i of layer l using a value sv through the update function.

The provided code contains an array called layers of size equal to the
number of layers L.

� For each layer l, the element layers[l] contains

– its neurons in an array layers[l].neu of size n,

– its synapses in an array layers[l].syn of size ml

– and the value of ml in layers[l].m.

� For each neuron i in layer l its value is in layers[l].neu[i].nv.

� For each synapse s in layer l the (i, j, sv) values are in layers[l].syn[s].i,
layers[l].syn[s].j and layers[l].syn[s].sv, respectively.

The inference is achieved through the following code in the sequential nn

routine

for(l=0; l<L-1; l++){

for(s=0; s<layers[l].m; s++){

i = layers[l].syn[s].i;

j = layers[l].syn[s].j;

layers[l+1].neu[j].nv += update(layers[l].neu[i].nv, layers[l].syn[s].sv);

}

}

For all layers l = 0, ..., L−1 and for all synapses s = 0, ...,ml−1 = layers[l].m− 1,
the code updates neuron j of layer l + 1 with neuron i of layer l using the in-
struction

layers[l+1].neu[j].nv += update(layers[l].neu[i].nv, layers[l].syn[s].sv);

Please pay attention to the + in the += operator.

1



2 Package content

In the neural network directory you will find the following files:

� main.c: this file contains the main program which first calls the init data

routine which initializes with random values all the neurons and all the
synapses for all the layers. The main program then calls the sequential nn

routine executes the above code, the parallel nn loops and parallel nn tasks

routines which contain the parallelized code to be implemented. After
these calls the main program checks that the output of the parallel rou-
tines is the same as that of the sequential one. Only this file has to be
modified for this exercise.

� aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the sparse nn directory; this will generate a main program that can be run like
this:

$ ./main n L

where n is the size (number of neurons) of the layers and L the number of
layers in the network.

3 Assignment

� Ï At the beginning, the parallel nn loops and parallel nn tasks

are a copy of sequential nn. Modify these routines in order to parallelize
them. The first must be parallelized using the omp for directive and the
second must be parallelized using the omp task directive. Make sure that
the computed result is correct.

�PReport the execution times for the implemented parallel versions with
1, 2 and 4 threads and compare them with the sequential routine. What
speedup could you achieve? analyze and comment on your results. Report
your answer in the form of comments at the bottom of the main.c file.

Advice

� When using the OpenMP task construct, always think about data scoping
to make sure input data has the correct value upon execution of the task
and returned results do not go out of scope when the task is finished.

� Note that the depend clause allows you to specify dependencies due to
access to single coefficients of an array. For example:

2



#pragma omp task depend(inout:x[i])

x[i] += 1;

� Choose small values for n, and L when developing (for example, n =
4, L = 2) and big ones when evaluating performance (for example, n =
15, L = 10).

3


