Linked list traversal

18/12/2014

1 Linked list traversal

This exercise is about parallelizing the traversal of a singly linked list whose
length is unknown.
The list is formed by elements of this type

struct node{
unsigned long val;
struct node *next;

};

Where the val field contains an integer value and the next field is a pointer
to the next element in the list. The list can be accesses through the head pointer
which points to the first element in the list.

2 Package content

In the linked_1ist directory you will find the following files:

e main.c: this file contains the main program which first calls the init_list
routine which initializes the list with a fixed, unknown length. The main
program then calls a sequential routine sequential _sweep and then the
two parallel routines parallel_for_sweep and parallel_task_sweep. Each
of these three routines traverses the whole linked list and processes each el-
ement calling the process_node routine on it; the result of this processing
is accumulated in the acc variable and returned at the end of the routine.
The process_node operation is expensive and takes a relatively long time
to execute. Only this file has to be modified for this exercise.

e aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the linked 1ist directory; this will generate a main program that can be run
like this:

$ ./main



3 Assignment

° At the beginning, the parallel for_sweep and parallel_task_sweep
are a copy of sequential_sweep. Modify these routines in order to par-
allelize them as follows:

— parallel for_sweep: this parallel version must be based on the
OpenMP for construct must not make use of the OpenMP task
one.

— parallel_task_sweep: this parallel version must be based on the
OpenMP task construct

Make sure that the result computed by the three routines (sequential and
parallel ones) is consistently (that is, at every execution of the parallel
code) the same.

° %\Report the execution times for the two implemented parallel ver-
sions with 1, 2 and 4 threads and compare them. Which version is
faster? analyze and comment on your results. Report your answer in
the responses.txt file.

Advice

e When implementing the parallel version based on OpenMP for remember
that this construct only works if the number of iterations in the loop is
known and therefore the provided code has to be modified in order to
achieve the parallelization. Think about allocating new arrays that may
help you achieve this.

e When using the OpenMP task construct, always think about data scoping
to make sure input data has the correct value upon execution of the task
and returned results do not go out of scope when the task is finished.



