
Array reduction

18/12/2014

1 Array reduction

This exercise is about parallelizing a reduction operation on all the elements of
an array x of size n. Consider a binary operator ⊗ which is associative which
means

a⊗ b⊗ c = (a⊗ b) ⊗ c = a⊗ (b⊗ c)

In the provided sequential code, this operator is implemented by the operator(int
*a, int *b) function which computes *a⊗*b and stores the result in a. The
provided sequential reduction code simply performs a sweep of the whole array
x:

for(i=1; i<n; i++)

operator(x, x+i);

and thus stores in x[0] the result of (((x[0]⊗x[1])⊗...)⊗x[n-1]⊗).

2 Package content

In the reduction directory you will find the following files:

• main.c: this file contains the main program that creates a vector x of
size n and then computes its reduction using first the sequential routine
sequential reduction and then the parallel routine parallel reduction

which has to be implemented as described below. Only this file has to
be modified for this exercise.

• aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the reduction directory; this will generate a main program that can be run like
this:

$ ./main n

where n is the size of the vector whose reduction has to be computed.

1



3 Assignment

• ÏAt the beginning, the parallel reduction are a copy of sequential reduction.
Modify these routine in order to parallelize it. Make sure that the result
computed by the two routines (sequential and parallel) is consistently
(that is, at every execution of the parallel code) the same.

•PIs the provided sequential algorithm parallelizable? why not? Re-
port your answer in the responses.txt file. Analyze the performance of
the parallel code using one, two and four threads. Report the execution
times in the responses.txt file and comment on the observed results:
did you observe any speedup (reduction of the execution time) using 2
and 4 threads instead of 1? How can you interpret these results? Can you
achieve a linear speedup (that is, sequential time divided by the number
of threads) ?

Advice

• Think about the associativity property of the ⊗ operator to find ways to
parallelize the reduction.

• Use a small (between 10 and 50) value for n when developing/debugging;
use a bigger value (between 100 and 500) when you’re sure that your
implementation works well and you want to analyze performance.

2


