
Synchronization

18/12/2014

1 Synchronization

This exercise is about implementing different ways to prevent data hazards oc-
curring when multiple threads access the same data. The code to be parallelized
consists of the following simple loop:

for(i=0; i<NIT; i++){

j = rand() % NE;

data[j] += func();

}

At each of the NIT iterations of the loop one element of the data array of
size NE is chosen randomly and summed with the result on the func() function
which is assumed to be expensive and take a relatively long time.

2 Package content

In the synchronizations directory you will find the following files:

• main.c: this file contains the main program that first calls the sequential
routine containing the simple loop presented above and then calls three
routines parallel critical, parallel atomic and parallel locks that
have to be developed and are meant to contain three different parallel im-
plementations of the loop above as described below. Only this file has
to be modified for this exercise.

• aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the synchronizations directory; this will generate a main program that can
be run like this:

$ ./main

1



3 Assignment

• ÏAt the beginning, parallel critical, parallel atomic and parallel locks

are a copy of sequential routine. Modify these routine in order to par-
allelize the loop presented above; make sure that potential data access
conflicts are avoided: in the first routine use the OpenMP critical con-
struct, in the second use the OpenMP atomic construct and in the third
use OpenMP locks to achieve this. Make sure that the result computed
by the three parallel routines is consistently (that is, at every execution
of the parallel code) the same as the sequential code.

•PReport in the responses.txt file execution times for the sequential
code and the three parallel routines using 1, 2 and 4 threads. Which
parallle version is fastest? Can you explain these results? Report your
comments and answers in the responses.txt.

Advice

• Different atomic operations are available in OpenMP: think about which
type is better suited to the operation you have to protect.

2


