
Longest branch of a tree

1 Longest tree branch

This exercise is about parallelizing a Depth First Search (DFS) traversal of a
random tree. We assume that each node has a weight which corresponds to the
time it takes to process it. Our DFS traversal finds the longest branch in the
tree, i.e., the branch such that the sum of the weigths of its nodes is maximum.

The tree is nodes of type node t which contain the following members

• weight: the weight of the node;

• branch weight: the weight of the branch that connects the node to the
root of the tree; this is set to zero at the beginning and is updated during
the DFS traversal;

• id: the node number;

• nc: the number of children of the node.

• *children: an array of pointers to the children of the node.

The traversal is done recursively using the following code

void longest_branch_seq_rec(node_t *root,

unsigned int *longest_branch_weight,

unsigned int *longest_branch_leaf){

int i;

process(root);

root->branch_weight += root->weight;

if(root->nc>0) {

for(i=0; i<root->nc; i++){

root->children[i].branch_weight = root->branch_weight;

longest_branch_seq_rec(root->children+i,

longest_branch_weight,

longest_branch_leaf);

}

} else {

if(root->branch_weight > *longest_branch_weight){

1



*longest_branch_weight = root->branch_weight;

*longest_branch_leaf = root->id;

}

}

}

The longest branch weight and longest branch leaf arguments of this
function are meant to return the weight of the longest branch and the cor-
responding leaf. When we visit a node, first we process it using the process

routine and we update the weight of the branch that connects it to the root (i.e.,
we add its weight to the branch weight of its father). Then, if it has children,
we recursively call this code on each one of them, if not then it means that we
have reached a leaf of the tree; in this case if the weight of the current branch
is grater than the current maximum contained in the longest branch weight

variable, we update longest branch weight and longest branch leaf.
For example, on the tree below, this method would return the leaf number

3 and the associated weight of 137.

id:1
wg:45

id:2
wg:46

id:4
wg:32

id:8
wg:20

id:3
wg:46

id:5
wg:24

id:9
wg:35

id:6
wg:17

id:7
wg:35

id:10
wg:19

id:11
wg:5

2 Package content

In the tree branch directory you will find the following files:

2



• main.c: this file contains the main program which first initializes the
tree for a provided number of maximum levels. The main program then
calls a sequential routine longest branch seq containing the above code,
then calls the longest branch par routine which is supposed to contain
a parallel version of the traversal code.

• longest branch seq.c: contains a routine implementing a sequential
traversal with the code presented above.

• longest branch par.c contains a routine implementing a parallel tree
traversal. Only this file has to be modified for this exercise.

• aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the tree branch directory; this will generate a main program that can be run
like this:

$ ./main l s

where l is the number of levels in the tree. The argument s is the seed for
the random number generation (which is used to build the tree), and can be
used to create trees of different shapes for a fixed number of levels.

3 Assignment

• Ï At the beginning, the longest branch par routine contains an exact
copy of the longest branch seq one. Modify these routine in order to
parallelize it. Make sure that the result computed by the three routines
(sequential and parallel ones) is consistently (that is, at every execution of
the parallel code) the same; a message printed at the end of the execution
will tell you whether this is the case. Note that there may be multiple
branches of the same length; in this case any of them will be considered
a correct result. Also, modify the code in order to count the number of
nodes updated by each of the working threads.

•PReport your answers to the two questions below in the responses.txt
file.

– In the TP on tree traversal we had to use the OpenMP taskwait

construct to enforce some precedence constraint. Is this needed in
this exercise? Explain your answer.

– Report the execution times for the implemented parallel version with
1, 2 and 4 threads and for different tree sizes. Analyze and comment
on your results: is the achieved speedup reasonable or not?

3



Advice

• As usual, when developing and debugging choose trees of small size. When
evaluating performance it’s better to choose a larges tree size.

4


