
Server

1 Server

This exercise is about parallelizing a server that receives a given number of
requests of different type, processes each of them and stores the results on the
appropriate stack. The corresponding sequential code is as follows:

for(;;){

req = receive();

printf("Received request %d\n",req.id);

if(req.type != -1) {

/* process request and push result on stack */

printf("Processing request %d\n",req.id);

stacks[req.type].results[++stacks[req.type].head] = process(&req);

} else {

break;

}

printf("Finished \n");

}

This code relies on two data structures. The first is Request:

typedef struct requeststruct{

int type;

int id;

double data;

} Request;

and contains three fields indicating the type (type), the request identifier (id)
and some data (data) which is used when the request is processed. The second
is Stack:

1



typedef struct stackstruct{

int head;

Result *results;

} Stack;

which implements a stack data structure that stores data of type Result. The
head field points to the top of the stack, i.e., the latest result stored therein;
therefore, when something is stored on top of the stack, this value must be
incremented.

The server enters a loop where, at each iteration, it receives a request req of
type req.type. It processes it making a call to the process routine, stores the
result on the stack stacks[req.type] of the corresponding type. The execution
is terminated when a request of type −1 is received.

2 Package content

In the server directory you will find the following files:

� main.c: this file contains the main program that first executes the sequen-
tial code presented above. Only this file has to be modified for this
exercise.

� aux.c, aux.h: these two files contain auxiliary routines and must not
be modified.

The code can be compiled with the make command: just type make inside
the server directory; this will generate a main program that can be run like
this:

$ ./main

3 Assignment

� Ï Parallelize the code using the OpenMP task directive. In the
paralle code there must be a server process that receives all the requests
and makes tasks for them. All the threads (including the server) will
execute the created tasks.

2


