TP-optimisation-numerique-2/docs/build/Annexes.html
2021-11-08 11:38:05 +01:00

3 lines
13 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Annexes · Optinum.jl</title><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL="."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="assets/documenter.js"></script><script src="siteinfo.js"></script><script src="../versions.js"></script><link class="docs-theme-link" rel="stylesheet" type="text/css" href="assets/themes/documenter-dark.css" data-theme-name="documenter-dark"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><a class="docs-logo" href="index.html"><img src="assets/logo.png" alt="Optinum.jl logo"/></a><div class="docs-package-name"><span class="docs-autofit">Optinum.jl</span></div><form class="docs-search" action="search.html"><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="index.html">Accueil</a></li><li><a class="tocitem" href="Sujet.html">Sujet</a></li><li><span class="tocitem">Algorithmes</span><ul><li><a class="tocitem" href="Algorithme_de_newton.html">L&#39;algorithme de Newton local</a></li><li><a class="tocitem" href="Regions_de_confiance.html">La méthode des régions de confiance</a></li><li><a class="tocitem" href="Lagrangien_augmente.html">La méthode du Lagrangien augmenté</a></li></ul></li><li><a class="tocitem" href="fct_index.html">Index des fonctions</a></li><li class="is-active"><a class="tocitem" href="Annexes.html">Annexes</a><ul class="internal"><li><a class="tocitem" href="#A.-Problèmes-sans-contraintes-1"><span>A. Problèmes sans contraintes</span></a></li><li><a class="tocitem" href="#B.-Cas-tests-pour-le-calcul-du-pas-de-Cauchy-1"><span>B. Cas tests pour le calcul du pas de Cauchy</span></a></li><li><a class="tocitem" href="#C.-Cas-tests-pour-la-résolution-du-sous-problème-par-lalgorithme-du-Gradient-Conjugué-Tronqué-1"><span>C. Cas tests pour la résolution du sous-problème par lalgorithme du Gradient Conjugué Tronqué</span></a></li><li><a class="tocitem" href="#D.-Problèmes-avec-contraintes-1"><span>D. Problèmes avec contraintes</span></a></li></ul></li><li><a class="tocitem" href="mise_en_place.html">Installation de Julia et tests unitaires</a></li><li><a class="tocitem" href="FAQ.html">Foire aux Questions</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li class="is-active"><a href="Annexes.html">Annexes</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href="Annexes.html">Annexes</a></li></ul></nav><div class="docs-right"><a class="docs-edit-link" href="https://github.com//blob/master/docs/src/Annexes.md" title="Edit on GitHub"><span class="docs-icon fab"></span><span class="docs-label is-hidden-touch">Edit on GitHub</span></a><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article class="content" id="documenter-page"><h2 id="A.-Problèmes-sans-contraintes-1"><a class="docs-heading-anchor" href="#A.-Problèmes-sans-contraintes-1">A. Problèmes sans contraintes</a><a class="docs-heading-anchor-permalink" href="#A.-Problèmes-sans-contraintes-1" title="Permalink"></a></h2><p>Les problèmes de minimisation sans contraintes à résoudre sont les suivants :</p><h4 id="Problème-1-1"><a class="docs-heading-anchor" href="#Problème-1-1">Problème 1</a><a class="docs-heading-anchor-permalink" href="#Problème-1-1" title="Permalink"></a></h4><p><span>$\hspace*{1.5cm}$</span> <span>$\begin{aligned} f_{1}: \mathbb{R}^{3} &amp; \rightarrow \mathbb{R} \\ \left(x_{1}, x_{2}, x_{3}\right) &amp; \mapsto 2\left(x_{1}+x_{2}+x_{3}-3\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2} \end{aligned}$</span></p><p>On cherchera à minimiser <span>$f_{1}$</span> sur <span>$\mathbb{R}^{3}$</span> , en partant des points suivants : <span>$\\$</span></p><p><span>$\hspace*{2cm}$</span> <span>$x_{011}=\left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right], \quad x_{012}=\left[\begin{array}{c} 10 \\ 3 \\ -2.2 \end{array}\right]$</span></p><h4 id="Problème-2-1"><a class="docs-heading-anchor" href="#Problème-2-1">Problème 2</a><a class="docs-heading-anchor-permalink" href="#Problème-2-1" title="Permalink"></a></h4><p><span>$\hspace*{1.5cm}$</span> <span>$\begin{aligned} f_{2}: \mathbb{R}^{2} &amp; \rightarrow \mathbb{R} \\ \left(x_{1}, x_{2}\right) &amp; \mapsto 100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \end{aligned}$</span></p><p>On cherchera à minimiser <span>$f_{2}$</span> sur <span>$\mathbb{R}^{2}$</span> , en partant des points suivants :<span>$\\$</span> </p><p><span>$x_{0 2 1}=\left[\begin{array}{c} -1.2 \\ 1 \end{array}\right]\\$</span></p><p><span>$x_{0 2 2}=\left[\begin{array}{c} 10 \\ 0 \end{array}\right]\\$</span></p><p><span>$x_{023}=\left[\begin{array}{c} 0 \\ \frac{1}{200}+\frac{1}{10^{12}} \end{array}\right]\\$</span></p><h2 id="B.-Cas-tests-pour-le-calcul-du-pas-de-Cauchy-1"><a class="docs-heading-anchor" href="#B.-Cas-tests-pour-le-calcul-du-pas-de-Cauchy-1">B. Cas tests pour le calcul du pas de Cauchy</a><a class="docs-heading-anchor-permalink" href="#B.-Cas-tests-pour-le-calcul-du-pas-de-Cauchy-1" title="Permalink"></a></h2><p>On considère des fonctions quadratiques de la forme <span>$q(s)=s^{\top} g+\frac{1}{2} s^{\top} H s$</span></p><h4 id="Quadratique-1-1"><a class="docs-heading-anchor" href="#Quadratique-1-1">Quadratique 1</a><a class="docs-heading-anchor-permalink" href="#Quadratique-1-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]$</span>,<span>$H=\left[\begin{array}{ll} 7 &amp; 0 \\ 0 &amp; 2 \end{array}\right]\\$</span></p><h4 id="Quadratique-2-1"><a class="docs-heading-anchor" href="#Quadratique-2-1">Quadratique 2</a><a class="docs-heading-anchor-permalink" href="#Quadratique-2-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} 6 \\ 2 \end{array}\right]$</span>,<span>$H=\left[\begin{array}{ll} 7 &amp; 0 \\ 0 &amp; 2 \end{array}\right]\\$</span></p><h4 id="Quadratique-3-1"><a class="docs-heading-anchor" href="#Quadratique-3-1">Quadratique 3</a><a class="docs-heading-anchor-permalink" href="#Quadratique-3-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} -2 \\ 1 \end{array}\right]$</span>,<span>$H=\left[\begin{array}{ll} -2 &amp; 0 \\ 0 &amp; 10 \end{array}\right]\\$</span></p><h2 id="C.-Cas-tests-pour-la-résolution-du-sous-problème-par-lalgorithme-du-Gradient-Conjugué-Tronqué-1"><a class="docs-heading-anchor" href="#C.-Cas-tests-pour-la-résolution-du-sous-problème-par-lalgorithme-du-Gradient-Conjugué-Tronqué-1">C. Cas tests pour la résolution du sous-problème par lalgorithme du Gradient Conjugué Tronqué</a><a class="docs-heading-anchor-permalink" href="#C.-Cas-tests-pour-la-résolution-du-sous-problème-par-lalgorithme-du-Gradient-Conjugué-Tronqué-1" title="Permalink"></a></h2><p>On reprendra les 3 quadratiques testées avec le pas de Cauchy, auxquelles on ajoutera :</p><h4 id="Quadratique-4-1"><a class="docs-heading-anchor" href="#Quadratique-4-1">Quadratique 4</a><a class="docs-heading-anchor-permalink" href="#Quadratique-4-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]$</span>, <span>$H=\left[\begin{array}{ll} -2 &amp; 0 \\ 0 &amp; 10 \end{array}\right]\\$</span></p><h4 id="Quadratique-5-1"><a class="docs-heading-anchor" href="#Quadratique-5-1">Quadratique 5</a><a class="docs-heading-anchor-permalink" href="#Quadratique-5-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} 2 \\ 3 \end{array}\right]$</span>,<span>$H=\left[\begin{array}{ll} 4 &amp; 6 \\ 6 &amp; 5 \end{array}\right]\\$</span></p><h4 id="Quadratique-6-1"><a class="docs-heading-anchor" href="#Quadratique-6-1">Quadratique 6</a><a class="docs-heading-anchor-permalink" href="#Quadratique-6-1" title="Permalink"></a></h4><p><span>$g=\left[\begin{array}{l} 2 \\ 0 \end{array}\right]$</span>, <span>$H=\left[\begin{array}{ll} 4 &amp; 0 \\ 0 &amp; -15 \end{array}\right]\\$</span></p><h2 id="D.-Problèmes-avec-contraintes-1"><a class="docs-heading-anchor" href="#D.-Problèmes-avec-contraintes-1">D. Problèmes avec contraintes</a><a class="docs-heading-anchor-permalink" href="#D.-Problèmes-avec-contraintes-1" title="Permalink"></a></h2><h3 id="Retour-sur-f_1-1"><a class="docs-heading-anchor" href="#Retour-sur-f_1-1">Retour sur <span>$f_1$</span></a><a class="docs-heading-anchor-permalink" href="#Retour-sur-f_1-1" title="Permalink"></a></h3><p>On s&#39;intéresse à la valeur minimale de <span>$f_1$</span> sur un ensemble défini par une contrainte linéaire. La formulation du problème sera alors </p><p><span>$\min _{x_{1}+x_{3}=1; x \in \mathbb{R}^{3}} f_{1}(x)$</span></p><p>On choisira comme point initial</p><p><span>$x_{c 11}=\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right]$</span> (réalisable) </p><p>ou </p><p><span>$x_{c 12}=\left[\begin{array}{l} 0.5 \\ 1.25 \\ 1 \end{array}\right]$</span> (non réalisable) .</p><h4 id="Retour-sur-f_2-1"><a class="docs-heading-anchor" href="#Retour-sur-f_2-1">Retour sur <span>$f_2$</span></a><a class="docs-heading-anchor-permalink" href="#Retour-sur-f_2-1" title="Permalink"></a></h4><p>On cherche à minimiser la fonction <span>$f_2$</span> décrite dans la partie précédente, en se restreignant maintenant à une sphère. Le problème s&#39;écrit :</p><p><span>$\min _{x_{1}^{2}+x_{2}^{2}=1.5; x \in \mathbb{R}^{2}} f_{2}(x)$</span></p><p>On choisira comme point initial</p><p><span>$x_{c 21}=\left[\begin{array}{c} 1 \\ 0 \end{array}\right]$</span> (non réalisable) </p><p>ou </p><p><span>$x_{c 22}=\left[\begin{array}{c} \sqrt{3} / 2 \\ \sqrt{3} / 2 \end{array}\right]$</span> (réalisable).</p><h3 id="Un-problème-avec-contraintes-d&#39;inégalité-(supplément)-1"><a class="docs-heading-anchor" href="#Un-problème-avec-contraintes-d&#39;inégalité-(supplément)-1">Un problème avec contraintes d&#39;inégalité (supplément)</a><a class="docs-heading-anchor-permalink" href="#Un-problème-avec-contraintes-d&#39;inégalité-(supplément)-1" title="Permalink"></a></h3><p><span>$\left\{\begin{array}{lll} \min _{(x, y) \in \mathbb{R}^{2}} f_{3}(x, y) &amp; = &amp; (x-1)^{2}+(y-2.5)^{2} \\ x-2 y+2 &amp; \geq &amp; 0 \\ -x-2 y+6 &amp; \geq &amp; 0 \\ -x+2 y+2 &amp; \geq &amp; 0 \\ x &amp; \geq &amp; 0 \\ y &amp; \geq &amp; 0 \end{array}\right.$</span></p><p>L&#39;origine pourra être prise comme point initial.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="fct_index.html">« Index des fonctions</a><a class="docs-footer-nextpage" href="mise_en_place.html">Installation de Julia et tests unitaires »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Monday 8 November 2021 11:31">Monday 8 November 2021</span>. Using Julia version 1.4.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>