36 lines
909 B
Mathematica
36 lines
909 B
Mathematica
|
clear;
|
||
|
close all;
|
||
|
|
||
|
load donnees_appariees;
|
||
|
load E_estimee;
|
||
|
|
||
|
% Coordonnées homogènes des pixels appariés :
|
||
|
p_1_tilde = [p_1_apparies ones(nb_paires,1)];
|
||
|
p_2_tilde = [p_2_apparies ones(nb_paires,1)];
|
||
|
w_1 = transpose(inverse_K*p_1_tilde');
|
||
|
w_2 = transpose(inverse_K*p_2_tilde');
|
||
|
|
||
|
% Estimation de la pose (4 solutions) :
|
||
|
[t_4,R_4] = estimation_4_poses(E_estimee);
|
||
|
|
||
|
% Reconstruction 3D (4 solutions) :
|
||
|
figure('Name','Reconstruction 3D : 4 solutions');
|
||
|
for i = 1:4
|
||
|
t = t_4(:,i);
|
||
|
R = R_4(:,:,i);
|
||
|
Q = reconstruction_3D(w_1,w_2,t,R);
|
||
|
affichage_3D(I_1,p_1_apparies,Q,t,R,i);
|
||
|
end
|
||
|
|
||
|
input('Tapez Entree pour afficher la bonne solution !');
|
||
|
|
||
|
% Détermination de la "bonne" pose :
|
||
|
[t,R] = estimation_pose(t_4,R_4,w_1,w_2);
|
||
|
|
||
|
% Reconstruction 3D de la "bonne" solution :
|
||
|
Q = reconstruction_3D(w_1,w_2,t,R);
|
||
|
|
||
|
% Affichage de la "bonne" solution :
|
||
|
figure('Name','Reconstruction 3D');
|
||
|
affichage_3D(I_1,p_1_apparies,Q,t,R);
|