feat: ajout des stdout lors du calcul des solutions

This commit is contained in:
Laurent Fainsin 2021-11-23 20:25:01 +01:00
parent 4df8e990d5
commit 053b0b164c
8 changed files with 139 additions and 13 deletions

0
exo1/voitures.sol Executable file → Normal file
View file

37
exo1/voitures.stdout Normal file
View file

@ -0,0 +1,37 @@
GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
--lp exo1/voitures.lp -o exo1/voitures.sol
Reading problem data from 'exo1/voitures.lp'...
3 rows, 2 columns, 5 non-zeros
2 integer variables, none of which are binary
21 lines were read
GLPK Integer Optimizer, v4.65
3 rows, 2 columns, 5 non-zeros
2 integer variables, none of which are binary
Preprocessing...
2 rows, 2 columns, 4 non-zeros
2 integer variables, none of which are binary
Scaling...
A: min|aij| = 5.000e+00 max|aij| = 2.000e+01 ratio = 4.000e+00
GM: min|aij| = 8.034e-01 max|aij| = 1.245e+00 ratio = 1.549e+00
EQ: min|aij| = 6.455e-01 max|aij| = 1.000e+00 ratio = 1.549e+00
2N: min|aij| = 6.250e-01 max|aij| = 1.250e+00 ratio = 2.000e+00
Constructing initial basis...
Size of triangular part is 2
Solving LP relaxation...
GLPK Simplex Optimizer, v4.65
2 rows, 2 columns, 4 non-zeros
* 0: obj = -0.000000000e+00 inf = 0.000e+00 (2)
* 3: obj = 1.028571429e+07 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
Long-step dual simplex will be used
+ 3: mip = not found yet <= +inf (1; 0)
Solution found by heuristic: 10282000
Solution found by heuristic: 10283000
+ 4: >>>>> 1.028400000e+07 <= 1.028400000e+07 0.0% (2; 0)
+ 4: mip = 1.028400000e+07 <= tree is empty 0.0% (0; 3)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (62364 bytes)
Writing MIP solution to 'exo1/voitures.sol'...

0
exo2/personnel.sol Executable file → Normal file
View file

38
exo2/personnel.stdout Normal file
View file

@ -0,0 +1,38 @@
GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
-m exo2/personnel.mod -d exo2/personnel.dat -o exo2/personnel.sol
Reading model section from exo2/personnel.mod...
33 lines were read
Reading data section from exo2/personnel.dat...
27 lines were read
Generating RespectUnTravailParPersonne...
Generating RespectUnePersonneParTravail...
Generating CoutTotal...
Model has been successfully generated
GLPK Integer Optimizer, v4.65
9 rows, 16 columns, 48 non-zeros
16 integer variables, all of which are binary
Preprocessing...
8 rows, 16 columns, 32 non-zeros
16 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 7
Solving LP relaxation...
GLPK Simplex Optimizer, v4.65
8 rows, 16 columns, 32 non-zeros
0: obj = 1.900000000e+01 inf = 2.000e+00 (1)
4: obj = 1.100000000e+01 inf = 0.000e+00 (0)
* 10: obj = 4.000000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
Long-step dual simplex will be used
+ 10: mip = not found yet >= -inf (1; 0)
+ 10: >>>>> 4.000000000e+00 >= 4.000000000e+00 0.0% (1; 0)
+ 10: mip = 4.000000000e+00 >= tree is empty 0.0% (0; 1)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (151199 bytes)
Writing MIP solution to 'exo2/personnel.sol'...

0
exo3/bourse.sol Executable file → Normal file
View file

22
exo3/bourse.stdout Normal file
View file

@ -0,0 +1,22 @@
GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
--lp exo3/bourse.lp -o exo3/bourse.sol
Reading problem data from 'exo3/bourse.lp'...
10 rows, 6 columns, 22 non-zeros
34 lines were read
GLPK Simplex Optimizer, v4.65
10 rows, 6 columns, 22 non-zeros
Preprocessing...
4 rows, 6 columns, 16 non-zeros
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 3.700e+00 ratio = 3.700e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 4
0: obj = 1.400000000e-01 inf = 2.400e+00 (4)
6: obj = 1.760000000e-01 inf = 0.000e+00 (0)
* 10: obj = 2.825384615e-01 inf = 5.551e-17 (0)
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.0 Mb (40436 bytes)
Writing basic solution to 'exo3/bourse.sol'...

26
exo4/ecommerce.sol Executable file → Normal file
View file

@ -3,7 +3,7 @@ Rows: 23
Columns: 12 Columns: 12
Non-zeros: 45 Non-zeros: 45
Status: OPTIMAL Status: OPTIMAL
Objective: CoutTotal = 5.25 (MINimum) Objective: CoutTotal = 8 (MINimum)
No. Row name St Activity Lower bound Upper bound Marginal No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- ------------- ------ ------------ -- ------------- ------------- ------------- -------------
@ -20,7 +20,7 @@ Objective: CoutTotal = 5.25 (MINimum)
6 ProportionZeroUn[d1,f2,m3] 6 ProportionZeroUn[d1,f2,m3]
B 0 1 B 0 1
7 ProportionZeroUn[d2,f1,m1] 7 ProportionZeroUn[d2,f1,m1]
NU 1 1 -0.5 NU 1 1 -3
8 ProportionZeroUn[d2,f1,m2] 8 ProportionZeroUn[d2,f1,m2]
B 0 1 B 0 1
9 ProportionZeroUn[d2,f1,m3] 9 ProportionZeroUn[d2,f1,m3]
@ -34,24 +34,24 @@ Objective: CoutTotal = 5.25 (MINimum)
13 ProportionTotalUn[d1,f1] 13 ProportionTotalUn[d1,f1]
NS 1 1 = 2 NS 1 1 = 2
14 ProportionTotalUn[d1,f2] 14 ProportionTotalUn[d1,f2]
NS 1 1 = 1
15 ProportionTotalUn[d2,f1]
NS 1 1 = 2 NS 1 1 = 2
15 ProportionTotalUn[d2,f1]
NS 1 1 = 4
16 ProportionTotalUn[d2,f2] 16 ProportionTotalUn[d2,f2]
NS 1 1 = 3 NS 1 1 = 5
17 RespectDesStocks[f1,m1] 17 RespectDesStocks[f1,m1]
NU 2.5 2.5 -0.5 NU 2.5 2.5 < eps
18 RespectDesStocks[f1,m2] 18 RespectDesStocks[f1,m2]
B 0.5 1 B 0.5 1
19 RespectDesStocks[f1,m3] 19 RespectDesStocks[f1,m3]
B 0 2 B 0 2
20 RespectDesStocks[f2,m1] 20 RespectDesStocks[f2,m1]
NU 1 1 -0.666667 NU 1 1 -1.33333
21 RespectDesStocks[f2,m2] 21 RespectDesStocks[f2,m2]
B 1 2 B 1 2
22 RespectDesStocks[f2,m3] 22 RespectDesStocks[f2,m3]
NU 1 1 -0.333333 NU 1 1 -0.666667
23 CoutTotal B 5.25 23 CoutTotal B 8
No. Column name St Activity Lower bound Upper bound Marginal No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- ------------- ------ ------------ -- ------------- ------------- ------------- -------------
@ -64,15 +64,15 @@ Objective: CoutTotal = 5.25 (MINimum)
4 coef[d1,f2,m1] 4 coef[d1,f2,m1]
B 1 0 B 1 0
5 coef[d1,f2,m2] 5 coef[d1,f2,m2]
NL 0 0 2
6 coef[d1,f2,m3]
NL 0 0 1 NL 0 0 1
6 coef[d1,f2,m3]
NL 0 0 < eps
7 coef[d2,f1,m1] 7 coef[d2,f1,m1]
B 1 0 B 1 0
8 coef[d2,f1,m2] 8 coef[d2,f1,m2]
B 0 0 NL 0 0 < eps
9 coef[d2,f1,m3] 9 coef[d2,f1,m3]
NL 0 0 1 B 0 0
10 coef[d2,f2,m1] 10 coef[d2,f2,m1]
B 0.333333 0 B 0.333333 0
11 coef[d2,f2,m2] 11 coef[d2,f2,m2]

29
exo4/ecommerce.stdout Normal file
View file

@ -0,0 +1,29 @@
GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
-m exo4/ecommerce.mod -d exo4/ecommerce.dat -o exo4/ecommerce.sol
Reading model section from exo4/ecommerce.mod...
44 lines were read
Reading data section from exo4/ecommerce.dat...
exo4/ecommerce.dat:43: warning: final NL missing before end of file
43 lines were read
Generating ProportionZeroUn...
Generating ProportionTotalUn...
Generating RespectDesStocks...
Generating CoutTotal...
Model has been successfully generated
GLPK Simplex Optimizer, v4.65
23 rows, 12 columns, 45 non-zeros
Preprocessing...
7 rows, 10 columns, 16 non-zeros
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 2.000e+00 ratio = 2.000e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 7
0: obj = 1.000000000e+01 inf = 1.667e+00 (2)
2: obj = 1.216666667e+01 inf = 1.110e-16 (0)
* 7: obj = 8.000000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (135844 bytes)
Writing basic solution to 'exo4/ecommerce.sol'...