93 lines
2.5 KiB
Matlab
Executable file
93 lines
2.5 KiB
Matlab
Executable file
%--------------------------------------------------------------------------
|
||
% ENSEEIHT - 2SN MM - Traitement des donnŽes audio-visuelles
|
||
% TP6 - Restauration d'images
|
||
% exercice_2
|
||
%--------------------------------------------------------------------------
|
||
|
||
clear
|
||
close all
|
||
clc
|
||
|
||
% Lecture des defauts:
|
||
udi = imread('Images/catjam_masque.png');
|
||
% udr = reshape(ud, [], 1);
|
||
|
||
% Param<61>tre pour garantir la diffŽrentiabilitŽ de la variation totale :
|
||
epsilon = 0.01;
|
||
|
||
u0 = imread('Images/catjam/frame-0.jpg');
|
||
u_max = max(u0(:));
|
||
u0 = max(0,min(1,u0/u_max));
|
||
[fimage,map] = rgb2ind(u0, 256);
|
||
% imwrite(fimage, map, "saves/exo2ter_clean.gif", 'gif', 'Loopcount', inf);
|
||
|
||
for i=0:156
|
||
|
||
% lecture d'une frame
|
||
u0 = double(imread(sprintf('Images/catjam/frame-%d.jpg', i)));
|
||
[nb_lignes,nb_colonnes,nb_canaux] = size(u0);
|
||
u_max = max(u0(:));
|
||
|
||
% on applique le texte
|
||
for c=1:3
|
||
img = u0(:,:,c);
|
||
if c == 3
|
||
color = 0;
|
||
else
|
||
color = 255;
|
||
end
|
||
img(udi(:,:,1) == 255) = color;
|
||
u0(:,:,c) = img;
|
||
end
|
||
|
||
[nb_lignes,nb_colonnes,nb_canaux] = size(u0);
|
||
nb_pixels = nb_lignes * nb_colonnes;
|
||
u0 = reshape(u0,[], 1, nb_canaux);
|
||
|
||
% on cherche les défauts dans l'image (le jaune)
|
||
ud = u0(:,:,1) >= 204 & u0(:,:,2) >= 204 & u0(:,:,3) <= 54;
|
||
|
||
% OpŽrateur gradient :
|
||
e = ones(nb_pixels,1);
|
||
Dx = spdiags([-e e],[0 nb_lignes],nb_pixels,nb_pixels);
|
||
Dx(end-nb_lignes+1:end,:) = 0;
|
||
Dy = spdiags([-e e],[0 1],nb_pixels,nb_pixels);
|
||
Dy(nb_lignes:nb_lignes:end,:) = 0;
|
||
|
||
% Second membre b du syst<73>me :
|
||
b = u0;
|
||
|
||
% Point fixe :
|
||
lambda = 10; % Poids de la rŽgularisation
|
||
u_k = u0;
|
||
convergence = +Inf;
|
||
iteration = 0;
|
||
|
||
image = max(0,min(1,reshape(u_k,[nb_lignes nb_colonnes nb_canaux])/u_max));
|
||
[fimage,fmap] = rgb2ind(image, 256);
|
||
imwrite(fimage, fmap, sprintf("saves/exo2catjam_bruit_%05d.jpg", i))
|
||
|
||
while convergence > 1e-3
|
||
|
||
% IncrŽmentation du nombre d'itŽrations :
|
||
iteration = iteration + 1;
|
||
|
||
% ItŽration (6) :
|
||
u_kp1 = inpainting(b,u_k,ud,lambda,Dx,Dy,epsilon);
|
||
|
||
% Test de convergence :
|
||
convergence = norm(u_kp1(:)-u_k(:))/norm(u_k(:));
|
||
|
||
% Mise ˆ jour de l'image courante u_k :
|
||
u_k = u_kp1;
|
||
end
|
||
|
||
% Affichage de l'image restaurŽe ˆ chaque itŽration :
|
||
image = max(0,min(1,reshape(u_k,[nb_lignes nb_colonnes nb_canaux])/u_max));
|
||
|
||
% Write to the GIF File
|
||
[fimage,fmap] = rgb2ind(image, 256);
|
||
imwrite(fimage, fmap, sprintf("saves/exo2catjam_clean_%05d.jpg", i));
|
||
|
||
end
|