799 lines
26 KiB
Python
799 lines
26 KiB
Python
import enum
|
|
import io
|
|
import obja.obja as obja
|
|
import numpy as np
|
|
import argparse
|
|
|
|
from rich.progress import Progress
|
|
|
|
|
|
def cot(x: float):
|
|
sin_x = np.sin(x)
|
|
if sin_x == 0:
|
|
return 1e16
|
|
return np.cos(x) / sin_x
|
|
|
|
|
|
def sliding_window(l: list, n: int = 2):
|
|
k = n - 1
|
|
l2 = l + [l[i] for i in range(k)]
|
|
res = [(x for x in l2[i:i+n]) for i in range(len(l2)-k)]
|
|
return res
|
|
|
|
|
|
class Edge:
|
|
def __init__(self, a, b):
|
|
self.a = min(a, b)
|
|
self.b = max(a, b)
|
|
|
|
self.face1 = None
|
|
self.face2 = None
|
|
|
|
self.fold = 0.0
|
|
self.curvature = 0.0
|
|
|
|
def __eq__(self, __o: object) -> bool:
|
|
if isinstance(__o, Edge):
|
|
return self.a == __o.a and self.b == __o.b
|
|
|
|
return False
|
|
|
|
|
|
class Face:
|
|
def __init__(self, a, b, c):
|
|
self.a = a
|
|
self.b = b
|
|
self.c = c
|
|
|
|
self.normal = np.zeros(3)
|
|
|
|
def to_obja(self):
|
|
return obja.Face(self.a, self.b, self.c)
|
|
|
|
def __eq__(self, __o: object) -> bool:
|
|
if isinstance(__o, Face):
|
|
return set((__o.a, __o.b, __o.c)) == set((self.a, self.b, self.c))
|
|
|
|
return False
|
|
|
|
|
|
class Vertex:
|
|
def __init__(self, pos):
|
|
self.pos = pos
|
|
|
|
self.vertex_ring = []
|
|
self.face_ring = []
|
|
|
|
self.normal = np.zeros(3)
|
|
|
|
self.area = 0.0
|
|
self.curvature = 0.0
|
|
|
|
def to_obja(self):
|
|
return self.pos
|
|
|
|
|
|
class MAPS(obja.Model):
|
|
"""_summary_
|
|
|
|
Args:
|
|
obja (_type_): _description_
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def parse_file(self, path):
|
|
super().parse_file(path)
|
|
for i, vertex in enumerate(self.vertices):
|
|
self.vertices[i] = Vertex(vertex)
|
|
for i, face in enumerate(self.faces):
|
|
self.faces[i] = Face(face.a, face.b, face.c)
|
|
|
|
def update(self):
|
|
self.progress.reset(self.select_task, total=len(self.vertices))
|
|
self.progress.reset(self.compress_task)
|
|
self.update_rings()
|
|
self.update_edges()
|
|
self.update_normals()
|
|
self.update_area_curvature()
|
|
|
|
def fix(self):
|
|
fixed = True
|
|
for i, vertex in enumerate(self.vertices):
|
|
if vertex is None:
|
|
continue
|
|
if len(vertex.face_ring) < 3:
|
|
for face in vertex.face_ring:
|
|
self.faces[face] = None
|
|
self.vertices[i] = None
|
|
fixed = False
|
|
return fixed
|
|
|
|
|
|
def update_edges(self):
|
|
self.edges = {}
|
|
|
|
for face in self.faces:
|
|
if face is None:
|
|
continue
|
|
|
|
for a, b in sliding_window([face.a, face.b, face.c], n=2):
|
|
new_edge = Edge(a, b)
|
|
if f"{new_edge.a}:{new_edge.b}" not in self.edges.keys():
|
|
new_edge.face1 = face
|
|
|
|
for face2_i in self.vertices[new_edge.a].face_ring:
|
|
face2 = self.faces[face2_i]
|
|
if face2 == face:
|
|
continue
|
|
|
|
face2_vertices = (face2.a, face2.b, face2.c)
|
|
if not (a in face2_vertices and b in face2_vertices):
|
|
continue
|
|
|
|
new_edge.face2 = face2
|
|
break
|
|
|
|
self.edges[f"{new_edge.a}:{new_edge.b}"] = new_edge
|
|
|
|
def update_rings(self):
|
|
try:
|
|
fixed = False
|
|
while not fixed:
|
|
for vertex in self.vertices:
|
|
if vertex is None:
|
|
continue
|
|
vertex.face_ring = []
|
|
|
|
for i, face in enumerate(self.faces):
|
|
if face is None:
|
|
continue
|
|
for vertex_i in (face.a, face.b, face.c):
|
|
self.vertices[vertex_i].face_ring.append(i)
|
|
|
|
fixed = self.fix()
|
|
|
|
for i, vertex in enumerate(self.vertices):
|
|
vertex = self.vertices[i]
|
|
if vertex is None:
|
|
continue
|
|
if len(vertex.face_ring) == 0:
|
|
self.vertices[i] = None
|
|
continue
|
|
ring = self.one_ring(i)
|
|
vertex.vertex_ring = ring
|
|
except ValueError:
|
|
self.update_rings()
|
|
|
|
|
|
def fail(self, index):
|
|
print('fail')
|
|
output_file = open('obja/example/fail.obja', 'w')
|
|
output = obja.Output(output_file)
|
|
used = []
|
|
for i, x in enumerate(self.vertices[index].face_ring):
|
|
face = self.faces[x]
|
|
for y in (face.a, face.b, face.c):
|
|
if y in used:
|
|
continue
|
|
output.add_vertex(y, self.vertices[y].to_obja())
|
|
used.append(y)
|
|
output.add_face(x, face.to_obja())
|
|
print('fc {} {} {} {}'.format(
|
|
i + 1,
|
|
np.random.rand(),
|
|
np.random.rand(),
|
|
np.random.rand()),
|
|
file=output_file
|
|
)
|
|
print(x, (face.a, face.b, face.c))
|
|
|
|
def update_area_curvature(self):
|
|
for i, vertex in enumerate(self.vertices):
|
|
if vertex is None:
|
|
continue
|
|
|
|
area, curvature = self.compute_area_curvature(i)
|
|
vertex.area = area
|
|
vertex.curvature = curvature
|
|
|
|
self.feature_edges = []
|
|
for edge in self.edges.values():
|
|
if edge.face2 is None:
|
|
self.fail(edge.b)
|
|
edge.fold = np.dot(edge.face1.normal, edge.face2.normal)
|
|
|
|
if edge.fold < 0.5:
|
|
self.feature_edges.append(edge)
|
|
|
|
def update_normals(self):
|
|
for face in self.faces:
|
|
if face is None:
|
|
continue
|
|
|
|
p1 = self.vertices[face.a].pos
|
|
p2 = self.vertices[face.b].pos
|
|
p3 = self.vertices[face.c].pos
|
|
u = p2 - p1
|
|
v = p3 - p1
|
|
n = np.cross(u, v)
|
|
n /= np.linalg.norm(n)
|
|
|
|
face.normal = n
|
|
|
|
self.vertices[face.a].normal += n
|
|
self.vertices[face.b].normal += n
|
|
self.vertices[face.c].normal += n
|
|
|
|
for vertex in self.vertices:
|
|
if vertex is None:
|
|
continue
|
|
|
|
norm = np.linalg.norm(vertex.normal)
|
|
if norm != 0:
|
|
vertex.normal /= norm
|
|
|
|
def one_ring(self, index: int) -> list[int]:
|
|
""" Return the corresponding 1-ring
|
|
|
|
Args:
|
|
index (int): index of the 1-ring's main vertex
|
|
|
|
Returns:
|
|
list[int]: ordered list of the 1-ring vertices
|
|
"""
|
|
|
|
ring_faces = [self.faces[i] for i in self.vertices[index].face_ring]
|
|
|
|
# Initialize the ring
|
|
start_index = (ring_faces[0].a if ring_faces[0].a != index and ring_faces[0].c != index else
|
|
ring_faces[0].b if ring_faces[0].a != index and ring_faces[0].b != index else
|
|
ring_faces[0].c)
|
|
ring = [start_index]
|
|
ring_faces.pop(0)
|
|
|
|
# Select the indexes of the ring in the right order
|
|
while len(ring_faces) > 0:
|
|
broke = False
|
|
prev_index = ring[-1]
|
|
for i, face in enumerate(ring_faces):
|
|
if prev_index in (face.a, face.b, face.c):
|
|
# Found the face that correspond to the next vertex
|
|
current_index = ( # select the next vertex from the face
|
|
face.a if face.a != index and face.a != prev_index else
|
|
face.b if face.b != index and face.b != prev_index else
|
|
face.c
|
|
)
|
|
ring.append(current_index)
|
|
ring_faces.pop(i)
|
|
broke = True
|
|
break
|
|
|
|
if not broke:
|
|
self.fail(index)
|
|
|
|
for i, face_i in enumerate(self.vertices[index].face_ring):
|
|
for face_j in self.vertices[index].face_ring[i+1:]:
|
|
face1 = self.faces[face_i]
|
|
face2 = self.faces[face_j]
|
|
if face1 == face2:
|
|
self.faces[face_i] = None
|
|
self.faces[face_j] = None
|
|
verts = (face1.a, face1.b, face1.c)
|
|
for vert in verts:
|
|
if vert == index:
|
|
continue
|
|
to_remove = True
|
|
for face_k in self.vertices[vert].face_ring:
|
|
face = self.faces[face_k]
|
|
if face is None:
|
|
continue
|
|
if vert in (face.a, face.b, face.c):
|
|
to_remove = False
|
|
break
|
|
if to_remove:
|
|
self.vertices[vert] = None
|
|
break
|
|
break
|
|
|
|
|
|
raise ValueError(
|
|
f"Vertex {prev_index} is not in the remaining faces {ring_faces}. Origin {ring} on {index}")
|
|
|
|
return ring
|
|
|
|
def compute_area_curvature(self, index: int) -> tuple[float, float]:
|
|
""" Compute area and curvature the corresponding 1-ring
|
|
|
|
Args:
|
|
index (int): index of the 1-ring's main vertex
|
|
|
|
Returns:
|
|
tuple[float, float]: area and curvature
|
|
"""
|
|
|
|
ring = self.vertices[index].vertex_ring
|
|
p1 = self.vertices[index].pos
|
|
n1 = self.vertices[index].normal
|
|
|
|
area_sum = 0
|
|
curvature = 0
|
|
for index1, index2 in sliding_window(ring, n=2):
|
|
# the second vertice of the triangle
|
|
p2 = self.vertices[index1].pos
|
|
p3 = self.vertices[index2].pos # the third vertice of the triangle
|
|
n2 = self.vertices[index1].normal
|
|
M = np.array([ # build the matrix, used to compute the area
|
|
[p1[0], p2[0], p3[0]],
|
|
[p1[1], p2[1], p3[1]],
|
|
[p1[2], p2[2], p3[2]],
|
|
])
|
|
area = abs(np.linalg.det(M) / 2) # compute the area
|
|
area_sum += area
|
|
|
|
edge_curvature = np.dot(n2 - n1, p2 - p1) / \
|
|
np.linalg.norm(p2 - p1)**2
|
|
edge_curvature = abs(edge_curvature)
|
|
edge_key = f"{min(index, index1)}:{max(index, index1)}"
|
|
self.edges[edge_key].curvature = edge_curvature
|
|
|
|
curvature += edge_curvature
|
|
|
|
curvature /= len(ring)
|
|
|
|
return area_sum, curvature
|
|
|
|
def compute_priority(self, lamb: float = 0.5, max_length: int = 12) -> list[float]:
|
|
""" Compute selection priority of vertices (0.0 -> hight priority ; 1.0 -> low priority)
|
|
|
|
Args:
|
|
lamb (float, optional): convex combination factor. Defaults to 0.5.
|
|
max_length (int, optional): 1-ring maximum length to be prioritary. Defaults to 12.
|
|
|
|
Returns:
|
|
list[float]: priority values
|
|
"""
|
|
max_area = max(
|
|
[vertex.area for vertex in self.vertices if vertex is not None])
|
|
max_curvature = max(
|
|
[vertex.curvature for vertex in self.vertices if vertex is not None])
|
|
|
|
# Compute priorities
|
|
priorities = []
|
|
for vertex in self.vertices:
|
|
if vertex is not None and len(vertex.vertex_ring) < max_length:
|
|
# Compute priority
|
|
priority = (
|
|
lamb * vertex.area / max_area +
|
|
(1.0 - lamb) * vertex.curvature / max_curvature
|
|
)
|
|
else:
|
|
# Vertex with low priority
|
|
priority = 2.0
|
|
priorities.append(priority)
|
|
|
|
return priorities
|
|
|
|
def select_vertices(self) -> list[int]:
|
|
""" Select vertices for the current level reduction
|
|
|
|
Returns:
|
|
list[int]: selected vertices
|
|
"""
|
|
|
|
# Order vertices by priority
|
|
priorities = self.compute_priority()
|
|
vertices = [i[0]
|
|
for i in sorted(enumerate(priorities), key=lambda p: p[1])]
|
|
|
|
selected_vertices = []
|
|
|
|
while len(vertices) > 0:
|
|
# Select prefered vertex
|
|
vertex = vertices.pop(0) # remove it from remaining vertices
|
|
self.progress.advance(self.select_task)
|
|
|
|
if priorities[vertex] == 2.0:
|
|
continue
|
|
|
|
incident_count = 0
|
|
for feature_edge in self.feature_edges:
|
|
if vertex in (feature_edge.a, feature_edge.b):
|
|
incident_count += 1
|
|
|
|
if incident_count > 2:
|
|
continue
|
|
|
|
selected_vertices.append(vertex)
|
|
|
|
# Remove neighbors
|
|
# for face in remaining_faces:
|
|
for face in self.faces:
|
|
if face is None:
|
|
continue
|
|
|
|
face_vertices = (face.a, face.b, face.c)
|
|
if vertex in face_vertices:
|
|
|
|
# Remove face and face's vertices form remainings
|
|
# remaining_faces.remove(face)
|
|
for face_vertex in face_vertices:
|
|
if face_vertex in vertices:
|
|
vertices.remove(face_vertex)
|
|
self.progress.advance(self.select_task)
|
|
|
|
return selected_vertices
|
|
|
|
def project_polar(self, index: int) -> tuple[list[np.ndarray], list[int]]:
|
|
""" Flatten the 1-ring to retriangulate
|
|
|
|
Args:
|
|
index (int): main vertex of the 1-ring
|
|
|
|
Returns:
|
|
list[np.ndarray]: list the cartesian coordinates of the flattened 1-ring projected in the plane
|
|
"""
|
|
ring = self.vertices[index].vertex_ring
|
|
radius, angles = [], []
|
|
teta = 0.0 # cumulated angles
|
|
for index1, index2 in sliding_window(ring):
|
|
r = np.linalg.norm(
|
|
self.vertices[index].pos - self.vertices[index1].pos)
|
|
teta += self.compute_angle(index1, index, index2) # add new angle
|
|
radius.append(r)
|
|
angles.append(teta)
|
|
angles = [2 * np.pi * a / teta for a in angles] # normalize angles
|
|
coordinates = [np.array([r * np.cos(a), r * np.sin(a)])
|
|
for r, a in zip(radius, angles)] # parse polar to cartesian
|
|
|
|
return coordinates, ring
|
|
|
|
def compute_angle(self, i: int, j: int, k: int) -> float:
|
|
""" Calculate the angle defined by three points
|
|
|
|
Args:
|
|
i (int): previous index
|
|
j (int): central index
|
|
k (int): next index
|
|
|
|
Returns:
|
|
float: angle defined by the three points
|
|
"""
|
|
a = self.vertices[i].pos
|
|
b = self.vertices[j].pos
|
|
c = self.vertices[k].pos
|
|
u = a - b
|
|
v = c - b
|
|
u /= np.linalg.norm(u)
|
|
v /= np.linalg.norm(v)
|
|
res = np.dot(u, v)
|
|
|
|
return np.arccos(np.clip(res, -1, 1))
|
|
|
|
def clip_ear(self, index: int) -> list[obja.Face]:
|
|
""" Retriangulate a polygon using the ear clipping algorithm
|
|
|
|
Args:
|
|
index (int): index of 1-ring
|
|
|
|
Returns:
|
|
tuple[list[obja.Face], int]: list the triangles
|
|
"""
|
|
polygon_, ring_ = self.project_polar(index)
|
|
|
|
main_v = []
|
|
for i, r in enumerate(ring_):
|
|
for feature_edge in self.feature_edges:
|
|
feat_edge_vertices = (feature_edge.a, feature_edge.b)
|
|
if r in feat_edge_vertices and index in feat_edge_vertices:
|
|
main_v.append(i)
|
|
|
|
if len(main_v) < 2:
|
|
|
|
polygons_rings = [(polygon_, ring_)]
|
|
|
|
else:
|
|
|
|
v1 = ring_[main_v[0]]
|
|
v2 = ring_[main_v[1]]
|
|
ring1, ring2 = [], []
|
|
polygon1, polygon2, = [], []
|
|
|
|
start = ring_.index(v1)
|
|
while ring_[start] != v2:
|
|
ring1.append(ring_[start])
|
|
polygon1.append(polygon_[start])
|
|
start += 1
|
|
start %= len(ring_)
|
|
ring1.append(ring_[start])
|
|
polygon1.append(polygon_[start])
|
|
|
|
start = ring_.index(v2)
|
|
while ring_[start] != v1:
|
|
ring2.append(ring_[start])
|
|
polygon2.append(polygon_[start])
|
|
start += 1
|
|
start %= len(ring_)
|
|
ring2.append(ring_[start])
|
|
polygon2.append(polygon_[start])
|
|
|
|
polygons_rings = [(polygon1, ring1), (polygon2, ring2)]
|
|
|
|
faces = [] # the final list of faces
|
|
|
|
for polygon, ring in polygons_rings:
|
|
|
|
indices = [(local_i, global_i)
|
|
for local_i, global_i in enumerate(ring)] # remainging vertices
|
|
|
|
node_index = 0
|
|
cycle_counter = 0
|
|
while len(indices) > 2:
|
|
# Extract indices
|
|
local_i, global_i = indices[node_index - 1]
|
|
local_j, global_j = indices[node_index]
|
|
local_k, global_k = indices[node_index + 1]
|
|
|
|
# Extract verticies
|
|
prev_vert = polygon[local_i]
|
|
curr_vert = polygon[local_j]
|
|
next_vert = polygon[local_k]
|
|
|
|
is_convex = self.is_convex(prev_vert, curr_vert, next_vert)
|
|
is_ear = True
|
|
# the triangle needs to be convext to be an ear
|
|
if is_convex or cycle_counter > len(indices):
|
|
# Begin with the point next to the triangle
|
|
test_node_index = (node_index + 2) % len(indices)
|
|
while indices[test_node_index][0] != local_i and is_ear:
|
|
test_vert = polygon[indices[test_node_index][0]]
|
|
is_ear = not self.is_inside(prev_vert,
|
|
curr_vert,
|
|
next_vert,
|
|
test_vert)
|
|
test_node_index = (test_node_index + 1) % len(indices)
|
|
else:
|
|
is_ear = False
|
|
cycle_counter += 1
|
|
|
|
if is_ear:
|
|
faces.append(Face(global_i, global_j, global_k))
|
|
indices.pop(node_index) # remove the point from the ring
|
|
cycle_counter = 0
|
|
|
|
node_index = (node_index + 2) % len(indices) - 1
|
|
|
|
return faces
|
|
|
|
def is_convex(self,
|
|
prev_vert: np.ndarray[int, np.dtype[np.float64]],
|
|
curr_vert: np.ndarray[int, np.dtype[np.float64]],
|
|
next_vert: np.ndarray[int, np.dtype[np.float64]]
|
|
) -> bool:
|
|
""" Check if the angle less than pi
|
|
|
|
Args:
|
|
prev_vert (np.ndarray): first point
|
|
curr_vert (np.ndarray): middle point
|
|
next_vert (np.ndarray): last point
|
|
|
|
Returns:
|
|
bool: angle smaller than pi
|
|
"""
|
|
a = prev_vert - curr_vert
|
|
b = next_vert - curr_vert
|
|
dot = a[0] * b[0] + a[1] * b[1]
|
|
det = a[0] * b[1] - a[1] * b[0]
|
|
angle = np.arctan2(det, dot)
|
|
if angle < 0.0:
|
|
angle = 2.0 * np.pi + angle
|
|
internal_angle = angle
|
|
return internal_angle >= np.pi
|
|
|
|
def is_inside(self,
|
|
a: np.ndarray[int, np.dtype[np.float64]],
|
|
b: np.ndarray[int, np.dtype[np.float64]],
|
|
c: np.ndarray[int, np.dtype[np.float64]],
|
|
p: np.ndarray[int, np.dtype[np.float64]]
|
|
) -> bool:
|
|
""" Check if p is in the triangle a b c
|
|
|
|
Args:
|
|
a (np.ndarray): point one
|
|
b (np.ndarray): point two
|
|
c (np.ndarray): point three
|
|
p (np.ndarray): point to check
|
|
|
|
Returns:
|
|
bool: if the point to check is in a b c
|
|
"""
|
|
# Compute vectors
|
|
v0 = c - a
|
|
v1 = b - a
|
|
v2 = p - a
|
|
|
|
# Compute dot products
|
|
dot00 = np.dot(v0, v0)
|
|
dot01 = np.dot(v0, v1)
|
|
dot02 = np.dot(v0, v2)
|
|
dot11 = np.dot(v1, v1)
|
|
dot12 = np.dot(v1, v2)
|
|
|
|
# Compute barycentric coordinates
|
|
denom = dot00 * dot11 - dot01 * dot01
|
|
if abs(denom) < 1e-20:
|
|
return True
|
|
invDenom = 1.0 / denom
|
|
u = (dot11 * dot02 - dot01 * dot12) * invDenom
|
|
v = (dot00 * dot12 - dot01 * dot02) * invDenom
|
|
|
|
# Check if point is in triangle
|
|
return (u >= 0) and (v >= 0) and (u + v < 1)
|
|
|
|
def debug(self, output):
|
|
|
|
self.update()
|
|
priorities = self.compute_priority()
|
|
|
|
colors = [priorities[face.a] + priorities[face.b] +
|
|
priorities[face.c] if face is not None else 0.0 for face in self.faces]
|
|
min_c = min(colors)
|
|
colors = [c - min_c for c in colors]
|
|
max_c = max(colors)
|
|
|
|
operations = []
|
|
for i, face in enumerate(self.faces):
|
|
if face is None:
|
|
continue
|
|
r, g, b = colors[i] / max_c, 1.0, 1.0
|
|
|
|
for feature_edge in self.feature_edges:
|
|
face_vertices = (face.a, face.b, face.c)
|
|
if feature_edge.a in face_vertices and feature_edge.b in face_vertices:
|
|
r, g, b = 1.0, 0.0, 0.0
|
|
break
|
|
|
|
operations.append(('fc', i, (r, g, b)))
|
|
operations.append(('af', i, face.to_obja()))
|
|
|
|
for i, vertex in enumerate(self.vertices):
|
|
if vertex is None:
|
|
continue
|
|
operations.append(('av', i, vertex.to_obja()))
|
|
operations.reverse()
|
|
|
|
# Write the result in output file
|
|
output_model = obja.Output(output)
|
|
|
|
for (op, index, value) in operations:
|
|
if op == 'av':
|
|
output_model.add_vertex(index, value)
|
|
elif op == 'af':
|
|
output_model.add_face(index, value)
|
|
elif op == 'ev':
|
|
output_model.edit_vertex(index, value)
|
|
elif op == 'ef':
|
|
output_model.edit_face(index, value)
|
|
elif op == 'fc':
|
|
print('fc {} {} {} {}'.format(
|
|
len(output_model.face_mapping),
|
|
value[0],
|
|
value[1],
|
|
value[2]),
|
|
file=output
|
|
)
|
|
|
|
def compress(self, output: io.TextIOWrapper, level: int, final_only: bool, debug: bool) -> None:
|
|
""" Compress the 3d model
|
|
|
|
Args:
|
|
output (io.TextIOWrapper): Output file descriptor
|
|
"""
|
|
|
|
with Progress() as progress:
|
|
self.global_task = progress.add_task('╓ Global compression')
|
|
self.select_task = progress.add_task('╟── Vertex selection')
|
|
self.compress_task = progress.add_task('╙── Compression')
|
|
self.progress = progress
|
|
|
|
operations = []
|
|
|
|
# while len(self.vertices) > 64:
|
|
for _ in progress.track(range(level), task_id=self.global_task):
|
|
self.update()
|
|
selected_vertices = self.select_vertices() # find the set of vertices to remove
|
|
|
|
for v_index in self.progress.track(selected_vertices, task_id=self.compress_task):
|
|
|
|
# Extract ring faces
|
|
ring_faces = self.vertices[v_index].face_ring
|
|
|
|
# Apply retriangulation algorithm
|
|
faces = self.clip_ear(v_index)
|
|
|
|
# Edit the first faces
|
|
for i in range(len(faces)):
|
|
if not final_only:
|
|
operations.append(
|
|
('ef', ring_faces[i], self.faces[ring_faces[i]].to_obja()))
|
|
self.faces[ring_faces[i]] = faces[i]
|
|
|
|
# Remove the last faces
|
|
for i in range(len(faces), len(ring_faces)):
|
|
if not final_only:
|
|
operations.append(
|
|
('af', ring_faces[i], self.faces[ring_faces[i]].to_obja()))
|
|
self.faces[ring_faces[i]] = None
|
|
|
|
# Remove the vertex
|
|
if not final_only:
|
|
operations.append(
|
|
('av', v_index, self.vertices[v_index].to_obja()))
|
|
self.vertices[v_index] = None
|
|
|
|
if debug:
|
|
self.debug(output)
|
|
return
|
|
|
|
# Register remaining vertices and faces
|
|
for i, face in enumerate(self.faces):
|
|
if face is not None:
|
|
operations.append(('af', i, face.to_obja()))
|
|
for i, v_index in enumerate(self.vertices):
|
|
if v_index is not None:
|
|
operations.append(('av', i, v_index.to_obja()))
|
|
|
|
# To rebuild the model, run operations in reverse order
|
|
operations.reverse()
|
|
|
|
# Write the result in output file
|
|
output_model = obja.Output(output)
|
|
|
|
for (op, index, value) in operations:
|
|
if op == 'av':
|
|
output_model.add_vertex(index, value)
|
|
elif op == 'af':
|
|
try:
|
|
output_model.add_face(index, value)
|
|
except:
|
|
print(self.vertices[value.b])
|
|
elif op == 'ev':
|
|
output_model.edit_vertex(index, value)
|
|
elif op == 'ef':
|
|
output_model.edit_face(index, value)
|
|
elif op == 'fc':
|
|
print('fc {} {} {} {}'.format(
|
|
index,
|
|
value[0],
|
|
value[1],
|
|
value[2]),
|
|
file=output
|
|
)
|
|
|
|
|
|
def main(args):
|
|
""" Run MAPS model compression
|
|
|
|
Args:
|
|
args (Namespace): arguments (input and output path)
|
|
"""
|
|
model = MAPS()
|
|
model.parse_file(args.input)
|
|
|
|
with open(args.output, 'w') as output:
|
|
model.compress(output, args.level, args.final or args.debug, args.debug)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-i', '--input', type=str, required=True)
|
|
parser.add_argument('-o', '--output', type=str, required=True)
|
|
parser.add_argument('-l', '--level', type=int, required=True)
|
|
parser.add_argument('-f', '--final', type=bool, default=False)
|
|
parser.add_argument('-d', '--debug', type=bool, default=False)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|