projet-long/slides.md

342 lines
8 KiB
Markdown
Raw Normal View History

2023-03-07 15:52:48 +00:00
---
theme: academic
class: text-white
coverAuthor: Laurent Fainsin, Pierre-Eliot Jourdan, Raphaëlle Monville-Letu, Jade Neav
coverBackgroundUrl: https://plus.unsplash.com/premium_photo-1673553304257-018c85e606f8?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8
coverBackgroundSource: unplash
coverBackgroundSourceUrl: https://unsplash.com/photos/g4I556WCJT0
coverDate: "2023-03-09"
themeConfig:
paginationX: r
paginationY: t
paginationPagesDisabled:
- 1
title: Projet Long
---
<h2 class="opacity-50" style="font-size: 1.9rem;">End of study project</h2>
<h1 style="font-size: 2.3rem;">Sphere detection and multimedia applications</h1>
---
# Contents
<div class="h-100 flex items-center text-2xl">
- Types of spheres
- Automatic sphere detection
- Lighting intensity estimation
- Lightning direction estimation
</div>
<figure class="absolute top-15 right-25 w-35">
<img src="https://images.pexels.com/photos/13849458/pexels-photo-13849458.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"/>
<figcaption class="text-center">Architecture</figcaption>
</figure>
<figure class="absolute top-40 right-75 w-50">
<img src="https://images.pexels.com/photos/3945321/pexels-photo-3945321.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"/>
<figcaption class="text-center">Cinema</figcaption>
</figure>
<figure class="absolute top-72 right-30 w-45">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTzg_yM_NbCIYXfZ55WdtFbAtaF7EUGSKSVBQ&usqp=CAU"/>
<figcaption class="text-center">3D Reconstruction</figcaption>
</figure>
<a href="https://www.pexels.com" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">pexels</a>
---
class: text-white custombg
---
<style>
.custombg {
background-repeat: no-repeat;
background-position: center center;
background-size: cover;
background-image: url("/assets/spheres.png");
}
</style>
## Types of spheres
---
class: text-white custombg2
---
<style>
.custombg2 {
background-repeat: no-repeat;
background-position: center center;
background-size: cover;
background-image: url("https://media.caveacademy.com/wp-content/uploads/2021/05/04000307/cave_prop1002_chrome_v001_r001.jpg");
}
</style>
## Chrome sphere
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
---
## Acquisition techniques
<img src="/assets/capture_hdri.jpg" class="m-auto"/>
<a href="https://www.youtube.com/watch?v=kwGZa5qTeAI" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">Louis du Mont</a>
<!-- https://www.youtube.com/watch?v=HCfHQL4kLnw -->
---
## Realistic lighting
<div class="grid grid-cols-2 col-auto m-auto h-100 gap-1">
<img src="/assets/image-026.png" class="m-auto w-full"/>
<img src="/assets/image-027.png" class="m-auto w-full"/>
</div>
---
class: text-white custombg3
---
<style>
.custombg3 {
background-repeat: no-repeat;
background-position: center center;
background-size: cover;
background-image: url("/assets/shiny.jpg");
}
</style>
## Shiny sphere
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
---
class: text-white custombg4
---
<style>
.custombg4 {
background-repeat: no-repeat;
background-position: center center;
background-size: cover;
background-image: url("https://media.caveacademy.com/wp-content/uploads/2021/05/04000316/cave_prop1002_grey_v001_r001.jpg");
}
</style>
## Matte sphere
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
---
# Automatic detection of spheres
---
## Model
<div class="h-100 flex items-center">
<img src="/assets/DETR.png" class="m-auto"/>
</div>
<a href="https://arxiv.org/abs/2005.12872" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">End-to-End Object Detection with Transformers, arXiv:2005.12872
</a>
---
## Datasets
<div class="grid grid-cols-2 col-auto m-auto h-full">
<img src="/assets/antoine.webp" class="m-auto h-55"/>
<img src="/assets/illumination.webp" class="m-auto h-55"/>
<img src="/assets/compositing.webp" class="m-auto h-55"/>
<img src="/assets/render.webp" class="m-auto h-55"/>
</div>
---
## Results
---
# Estimation of the lighting intensity in an image
---
## Photometric Stereo
<div class="h-100 flex items-center">
<img src= "https://upload.wikimedia.org/wikipedia/commons/b/b5/Photometric_stereo.png" class="m-auto h-90"/>
</div>
- Estimate the surface normals of an object
- Shiny spheres $\rightarrow$ direction of the lighting
---
## Lambert law
<div class="h-100 flex items-center">
<img src= "https://img.laserfocusworld.com/files/base/ebm/lfw/image/2019/06/1906LFW_ost_1.5d13a8a881e81.png?auto=format,compress&w=1050&h=590&fit=clip" class="m-auto h-90"/>
</div>
$I(q) = \rho(Q) \times \vec{n}(Q) \cdot \vec{s}(Q)$
$\rho(Q)$ is the albedo
$\vec{n}(Q)$ is the normal vector
$\vec{s}(Q) = \phi \times \vec{s_0}(Q)$, $\vec{s_0}(Q)$ being the direction of the lighting vector
---
## Problem formulation
$N$ lightings, $P$ pixels
$I = M \times S \times D_{\phi}$
$I \in \mathbb{R}^{P \times N} \rightarrow$ gray scale levels
$M \in \mathbb{R}^{P \times 3} \rightarrow$ the albedo and the normals (unknown)
$S \in \mathbb{R}^{3 \times N} \rightarrow$ direction of lightings
$D_{phi} = diag(\phi_1,...,\phi_{N}) \in \mathbb{R}^{ N \times N} \rightarrow$ intensities of lightings (to be determined)
---
## Algorithm 1
<div class="h-100 flex items-center">
<img src="/assets/algo1.png" class="m-auto h-80"/>
</div>
Intensities : $[\phi_1,...,\phi_{N}]$
New values : $\phi_j + \delta$ and $\phi_j + \delta$, $j \in [1,..,N]$
Mean-squared error : $\underset{\phi_i}{\min} || I - M S D_{\phi} ||_2^2$
Update the value of $\phi_j$
Repeat previous steps
---
## Algorithm 2
Algorithm 1 $\rightarrow$ too long
$$I = M S D_{\phi} \iff M = I(S D_{\phi})^\dagger = I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1}$$
Lambert law :
$$
\begin{align*}
I &= I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1} S D_{\phi} \\
&= I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi}
\end{align*}
$$
New residual :
$$\underset{\phi_i}{\min} || I - I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi} ||_2^2$$
---
## Generated images
<div class="grid grid-cols-4 col-auto h-110 m-auto">
<img src="/assets/im2.jpg" class="m-auto h-50"/>
<img src="/assets/im3.jpg" class="m-auto h-50"/>
<img src="/assets/im4.jpg" class="m-auto h-50"/>
<img src="/assets/im5.jpg" class="m-auto h-50"/>
<img src="/assets/im12.jpg" class="m-auto h-50"/>
<img src="/assets/im13.jpg" class="m-auto h-50"/>
<img src="/assets/im14.jpg" class="m-auto h-50"/>
<img src="/assets/im15.jpg" class="m-auto h-50"/>
</div>
---
## Results (1/2)
<div class="h-100 flex items-center">
<img src="/assets/residu_4.jpg" class="m-auto w-full"/>
<img src="/assets/residu2d_3.jpg" class="m-auto w-full"/>
</div>
---
## Results (2/2)
<div class="h-100 flex items-center">
<img src="/assets/resultats_finaux.jpg" class="m-auto h-110"/>
</div>
---
## Real images
TODO LOLO : mettre les images comme dans les slides avec carre rouge
---
## Results
<div class="h-100 flex items-center">
<img src="/assets/resultats_finaux_comete.jpg" class="m-auto w-full"/>
<img src="/assets/resultats_finaux_stsernin.jpg" class="m-auto w-full"/>
</div>
---
# Automatic estimation of lighting vector
- Creation of data
- Estimation of light vector with matte balls
- Training of neural networks
---
## Creation of mask
---
## Generated data with Blender
---
## Estimation of lighting vector for training
---
## Verification estimation of lighting vector
---
## Which type of neural network ?
---
## Results
---
## Conclusion
---
## Perspectives