342 lines
8 KiB
Markdown
342 lines
8 KiB
Markdown
|
---
|
||
|
theme: academic
|
||
|
class: text-white
|
||
|
coverAuthor: Laurent Fainsin, Pierre-Eliot Jourdan, Raphaëlle Monville-Letu, Jade Neav
|
||
|
coverBackgroundUrl: https://plus.unsplash.com/premium_photo-1673553304257-018c85e606f8?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8
|
||
|
coverBackgroundSource: unplash
|
||
|
coverBackgroundSourceUrl: https://unsplash.com/photos/g4I556WCJT0
|
||
|
coverDate: "2023-03-09"
|
||
|
themeConfig:
|
||
|
paginationX: r
|
||
|
paginationY: t
|
||
|
paginationPagesDisabled:
|
||
|
- 1
|
||
|
title: Projet Long
|
||
|
---
|
||
|
|
||
|
<h2 class="opacity-50" style="font-size: 1.9rem;">End of study project</h2>
|
||
|
|
||
|
<h1 style="font-size: 2.3rem;">Sphere detection and multimedia applications</h1>
|
||
|
|
||
|
---
|
||
|
|
||
|
# Contents
|
||
|
|
||
|
<div class="h-100 flex items-center text-2xl">
|
||
|
|
||
|
- Types of spheres
|
||
|
- Automatic sphere detection
|
||
|
- Lighting intensity estimation
|
||
|
- Lightning direction estimation
|
||
|
|
||
|
</div>
|
||
|
|
||
|
<figure class="absolute top-15 right-25 w-35">
|
||
|
<img src="https://images.pexels.com/photos/13849458/pexels-photo-13849458.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"/>
|
||
|
<figcaption class="text-center">Architecture</figcaption>
|
||
|
</figure>
|
||
|
|
||
|
<figure class="absolute top-40 right-75 w-50">
|
||
|
<img src="https://images.pexels.com/photos/3945321/pexels-photo-3945321.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"/>
|
||
|
<figcaption class="text-center">Cinema</figcaption>
|
||
|
</figure>
|
||
|
|
||
|
<figure class="absolute top-72 right-30 w-45">
|
||
|
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTzg_yM_NbCIYXfZ55WdtFbAtaF7EUGSKSVBQ&usqp=CAU"/>
|
||
|
<figcaption class="text-center">3D Reconstruction</figcaption>
|
||
|
</figure>
|
||
|
|
||
|
<a href="https://www.pexels.com" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">pexels</a>
|
||
|
|
||
|
---
|
||
|
class: text-white custombg
|
||
|
---
|
||
|
|
||
|
<style>
|
||
|
.custombg {
|
||
|
background-repeat: no-repeat;
|
||
|
background-position: center center;
|
||
|
background-size: cover;
|
||
|
background-image: url("/assets/spheres.png");
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
## Types of spheres
|
||
|
|
||
|
---
|
||
|
class: text-white custombg2
|
||
|
---
|
||
|
|
||
|
<style>
|
||
|
.custombg2 {
|
||
|
background-repeat: no-repeat;
|
||
|
background-position: center center;
|
||
|
background-size: cover;
|
||
|
background-image: url("https://media.caveacademy.com/wp-content/uploads/2021/05/04000307/cave_prop1002_chrome_v001_r001.jpg");
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
## Chrome sphere
|
||
|
|
||
|
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
|
||
|
|
||
|
---
|
||
|
|
||
|
## Acquisition techniques
|
||
|
|
||
|
<img src="/assets/capture_hdri.jpg" class="m-auto"/>
|
||
|
|
||
|
<a href="https://www.youtube.com/watch?v=kwGZa5qTeAI" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">Louis du Mont</a>
|
||
|
|
||
|
<!-- https://www.youtube.com/watch?v=HCfHQL4kLnw -->
|
||
|
|
||
|
---
|
||
|
|
||
|
## Realistic lighting
|
||
|
|
||
|
<div class="grid grid-cols-2 col-auto m-auto h-100 gap-1">
|
||
|
<img src="/assets/image-026.png" class="m-auto w-full"/>
|
||
|
<img src="/assets/image-027.png" class="m-auto w-full"/>
|
||
|
</div>
|
||
|
|
||
|
---
|
||
|
class: text-white custombg3
|
||
|
---
|
||
|
|
||
|
<style>
|
||
|
.custombg3 {
|
||
|
background-repeat: no-repeat;
|
||
|
background-position: center center;
|
||
|
background-size: cover;
|
||
|
background-image: url("/assets/shiny.jpg");
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
|
||
|
## Shiny sphere
|
||
|
|
||
|
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
|
||
|
|
||
|
---
|
||
|
class: text-white custombg4
|
||
|
---
|
||
|
|
||
|
<style>
|
||
|
.custombg4 {
|
||
|
background-repeat: no-repeat;
|
||
|
background-position: center center;
|
||
|
background-size: cover;
|
||
|
background-image: url("https://media.caveacademy.com/wp-content/uploads/2021/05/04000316/cave_prop1002_grey_v001_r001.jpg");
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
## Matte sphere
|
||
|
|
||
|
<a href="https://caveacademy.com/wiki/onset-production/data-acquisition/data-acquisition-training/the-grey-the-chrome-and-the-macbeth-chart/" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">CaveAcademy</a>
|
||
|
|
||
|
---
|
||
|
|
||
|
# Automatic detection of spheres
|
||
|
|
||
|
---
|
||
|
|
||
|
## Model
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src="/assets/DETR.png" class="m-auto"/>
|
||
|
</div>
|
||
|
|
||
|
<a href="https://arxiv.org/abs/2005.12872" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">End-to-End Object Detection with Transformers, arXiv:2005.12872
|
||
|
</a>
|
||
|
|
||
|
---
|
||
|
|
||
|
## Datasets
|
||
|
|
||
|
|
||
|
<div class="grid grid-cols-2 col-auto m-auto h-full">
|
||
|
<img src="/assets/antoine.webp" class="m-auto h-55"/>
|
||
|
<img src="/assets/illumination.webp" class="m-auto h-55"/>
|
||
|
<img src="/assets/compositing.webp" class="m-auto h-55"/>
|
||
|
<img src="/assets/render.webp" class="m-auto h-55"/>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
---
|
||
|
|
||
|
## Results
|
||
|
|
||
|
---
|
||
|
|
||
|
# Estimation of the lighting intensity in an image
|
||
|
|
||
|
---
|
||
|
|
||
|
## Photometric Stereo
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src= "https://upload.wikimedia.org/wikipedia/commons/b/b5/Photometric_stereo.png" class="m-auto h-90"/>
|
||
|
</div>
|
||
|
|
||
|
- Estimate the surface normals of an object
|
||
|
- Shiny spheres $\rightarrow$ direction of the lighting
|
||
|
|
||
|
---
|
||
|
|
||
|
## Lambert law
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src= "https://img.laserfocusworld.com/files/base/ebm/lfw/image/2019/06/1906LFW_ost_1.5d13a8a881e81.png?auto=format,compress&w=1050&h=590&fit=clip" class="m-auto h-90"/>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
$I(q) = \rho(Q) \times \vec{n}(Q) \cdot \vec{s}(Q)$
|
||
|
|
||
|
$\rho(Q)$ is the albedo
|
||
|
|
||
|
$\vec{n}(Q)$ is the normal vector
|
||
|
|
||
|
$\vec{s}(Q) = \phi \times \vec{s_0}(Q)$, $\vec{s_0}(Q)$ being the direction of the lighting vector
|
||
|
|
||
|
---
|
||
|
|
||
|
## Problem formulation
|
||
|
|
||
|
$N$ lightings, $P$ pixels
|
||
|
|
||
|
$I = M \times S \times D_{\phi}$
|
||
|
|
||
|
$I \in \mathbb{R}^{P \times N} \rightarrow$ gray scale levels
|
||
|
|
||
|
$M \in \mathbb{R}^{P \times 3} \rightarrow$ the albedo and the normals (unknown)
|
||
|
|
||
|
$S \in \mathbb{R}^{3 \times N} \rightarrow$ direction of lightings
|
||
|
|
||
|
$D_{phi} = diag(\phi_1,...,\phi_{N}) \in \mathbb{R}^{ N \times N} \rightarrow$ intensities of lightings (to be determined)
|
||
|
|
||
|
---
|
||
|
|
||
|
## Algorithm 1
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src="/assets/algo1.png" class="m-auto h-80"/>
|
||
|
</div>
|
||
|
|
||
|
Intensities : $[\phi_1,...,\phi_{N}]$
|
||
|
|
||
|
New values : $\phi_j + \delta$ and $\phi_j + \delta$, $j \in [1,..,N]$
|
||
|
|
||
|
Mean-squared error : $\underset{\phi_i}{\min} || I - M S D_{\phi} ||_2^2$
|
||
|
|
||
|
Update the value of $\phi_j$
|
||
|
|
||
|
Repeat previous steps
|
||
|
|
||
|
---
|
||
|
|
||
|
## Algorithm 2
|
||
|
|
||
|
Algorithm 1 $\rightarrow$ too long
|
||
|
|
||
|
$$I = M S D_{\phi} \iff M = I(S D_{\phi})^\dagger = I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1}$$
|
||
|
|
||
|
Lambert law :
|
||
|
|
||
|
$$
|
||
|
\begin{align*}
|
||
|
I &= I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1} S D_{\phi} \\
|
||
|
&= I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi}
|
||
|
\end{align*}
|
||
|
$$
|
||
|
|
||
|
New residual :
|
||
|
|
||
|
$$\underset{\phi_i}{\min} || I - I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi} ||_2^2$$
|
||
|
|
||
|
|
||
|
---
|
||
|
|
||
|
## Generated images
|
||
|
|
||
|
<div class="grid grid-cols-4 col-auto h-110 m-auto">
|
||
|
<img src="/assets/im2.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im3.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im4.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im5.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im12.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im13.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im14.jpg" class="m-auto h-50"/>
|
||
|
<img src="/assets/im15.jpg" class="m-auto h-50"/>
|
||
|
</div>
|
||
|
|
||
|
---
|
||
|
|
||
|
## Results (1/2)
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src="/assets/residu_4.jpg" class="m-auto w-full"/>
|
||
|
<img src="/assets/residu2d_3.jpg" class="m-auto w-full"/>
|
||
|
</div>
|
||
|
|
||
|
---
|
||
|
|
||
|
## Results (2/2)
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src="/assets/resultats_finaux.jpg" class="m-auto h-110"/>
|
||
|
</div>
|
||
|
|
||
|
---
|
||
|
|
||
|
## Real images
|
||
|
|
||
|
TODO LOLO : mettre les images comme dans les slides avec carre rouge
|
||
|
|
||
|
---
|
||
|
|
||
|
## Results
|
||
|
|
||
|
<div class="h-100 flex items-center">
|
||
|
<img src="/assets/resultats_finaux_comete.jpg" class="m-auto w-full"/>
|
||
|
<img src="/assets/resultats_finaux_stsernin.jpg" class="m-auto w-full"/>
|
||
|
</div>
|
||
|
|
||
|
---
|
||
|
|
||
|
# Automatic estimation of lighting vector
|
||
|
|
||
|
- Creation of data
|
||
|
- Estimation of light vector with matte balls
|
||
|
- Training of neural networks
|
||
|
|
||
|
---
|
||
|
|
||
|
## Creation of mask
|
||
|
|
||
|
---
|
||
|
|
||
|
## Generated data with Blender
|
||
|
|
||
|
---
|
||
|
|
||
|
## Estimation of lighting vector for training
|
||
|
|
||
|
---
|
||
|
|
||
|
## Verification estimation of lighting vector
|
||
|
|
||
|
---
|
||
|
|
||
|
## Which type of neural network ?
|
||
|
|
||
|
---
|
||
|
|
||
|
## Results
|
||
|
|
||
|
---
|
||
|
|
||
|
## Conclusion
|
||
|
|
||
|
---
|
||
|
|
||
|
## Perspectives
|