feat(WIP): broken onnx prediction
Former-commit-id: cde7623ec486cf79a710949085aadd92d8a33a3e [formerly db0f1d0b9ea536c741f23a3b683e19a9335bcd35] Former-commit-id: 7332ccb0f74c58c3a284a4568fb8f80a6d416cf4
This commit is contained in:
parent
d785a5c6be
commit
0fb1d4fb7a
4
.vscode/launch.json
vendored
4
.vscode/launch.json
vendored
|
@ -14,7 +14,9 @@
|
|||
"--input",
|
||||
"images/SM.png",
|
||||
"--output",
|
||||
"output.png",
|
||||
"output_onnx.png",
|
||||
"--model",
|
||||
"good.onnx",
|
||||
],
|
||||
"justMyCode": true
|
||||
}
|
||||
|
|
|
@ -2,13 +2,12 @@ import argparse
|
|||
import logging
|
||||
|
||||
import albumentations as A
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
from PIL import Image
|
||||
|
||||
from unet import UNet
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
|
@ -38,47 +37,35 @@ def get_args():
|
|||
return parser.parse_args()
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
|
||||
|
||||
net = UNet(n_channels=3, n_classes=1)
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
logging.info(f"Using device {device}")
|
||||
|
||||
logging.info("Transfering model to device")
|
||||
net.to(device=device)
|
||||
|
||||
logging.info(f"Loading model {args.model}")
|
||||
net.load_state_dict(torch.load(args.model, map_location=device))
|
||||
net = cv2.dnn.readNetFromONNX(args.model)
|
||||
logging.info("onnx model loaded")
|
||||
|
||||
logging.info(f"Loading image {args.input}")
|
||||
img = Image.open(args.input).convert("RGB")
|
||||
input_img = cv2.imread(args.input, cv2.IMREAD_COLOR)
|
||||
input_img = input_img.astype(np.float32)
|
||||
# input_img = cv2.resize(input_img, (512, 512))
|
||||
|
||||
logging.info(f"Preprocessing image {args.input}")
|
||||
tf = A.Compose(
|
||||
[
|
||||
A.ToFloat(max_value=255),
|
||||
ToTensorV2(),
|
||||
],
|
||||
logging.info("converting to blob")
|
||||
input_blob = cv2.dnn.blobFromImage(
|
||||
image=input_img,
|
||||
scalefactor=1 / 255,
|
||||
)
|
||||
aug = tf(image=np.asarray(img))
|
||||
img = aug["image"]
|
||||
|
||||
logging.info(f"Predicting image {args.input}")
|
||||
img = img.unsqueeze(0).to(device=device, dtype=torch.float32)
|
||||
|
||||
net.eval()
|
||||
with torch.inference_mode():
|
||||
mask = net(img)
|
||||
mask = torch.sigmoid(mask)[0]
|
||||
mask = mask.cpu()
|
||||
mask = mask.squeeze()
|
||||
mask = mask > 0.5
|
||||
mask = np.asarray(mask)
|
||||
net.setInput(input_blob)
|
||||
mask = net.forward()
|
||||
mask = sigmoid(mask)
|
||||
mask = mask > 0.5
|
||||
mask = mask.astype(np.float32)
|
||||
|
||||
logging.info(f"Saving prediction to {args.output}")
|
||||
mask = Image.fromarray(mask)
|
||||
mask = Image.fromarray(mask, "L")
|
||||
mask.save(args.output)
|
||||
|
|
40
src/train.py
40
src/train.py
|
@ -5,12 +5,13 @@ import torch
|
|||
import yaml
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
from torch.utils.data import DataLoader
|
||||
from torchmetrics import Dice
|
||||
from tqdm import tqdm
|
||||
|
||||
import wandb
|
||||
from src.utils.dataset import SphereDataset
|
||||
from unet import UNet
|
||||
from utils.dice import dice_coeff
|
||||
from utils.dice import DiceLoss
|
||||
from utils.paste import RandomPaste
|
||||
|
||||
class_labels = {
|
||||
|
@ -37,8 +38,8 @@ if __name__ == "__main__":
|
|||
PIN_MEMORY=True,
|
||||
BENCHMARK=True,
|
||||
DEVICE="cuda",
|
||||
WORKERS=8,
|
||||
EPOCHS=5,
|
||||
WORKERS=7,
|
||||
EPOCHS=1001,
|
||||
BATCH_SIZE=16,
|
||||
LEARNING_RATE=1e-4,
|
||||
WEIGHT_DECAY=1e-8,
|
||||
|
@ -92,9 +93,13 @@ if __name__ == "__main__":
|
|||
ds_test = SphereDataset(image_dir=wandb.config.DIR_TEST_IMG)
|
||||
|
||||
# 2.5. Create subset, if uncommented
|
||||
ds_train = torch.utils.data.Subset(ds_train, list(range(0, len(ds_train), len(ds_train) // 10000)))
|
||||
ds_valid = torch.utils.data.Subset(ds_valid, list(range(0, len(ds_valid), len(ds_valid) // 1000)))
|
||||
ds_test = torch.utils.data.Subset(ds_test, list(range(0, len(ds_test), len(ds_test) // 100)))
|
||||
# ds_train = torch.utils.data.Subset(ds_train, list(range(0, len(ds_train), len(ds_train) // 10000)))
|
||||
# ds_valid = torch.utils.data.Subset(ds_valid, list(range(0, len(ds_valid), len(ds_valid) // 100)))
|
||||
# ds_test = torch.utils.data.Subset(ds_test, list(range(0, len(ds_test), len(ds_test) // 100)))
|
||||
|
||||
ds_train = torch.utils.data.Subset(ds_train, [0])
|
||||
ds_valid = torch.utils.data.Subset(ds_valid, [0])
|
||||
ds_test = torch.utils.data.Subset(ds_test, [0])
|
||||
|
||||
# 3. Create data loaders
|
||||
train_loader = DataLoader(
|
||||
|
@ -131,18 +136,19 @@ if __name__ == "__main__":
|
|||
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2)
|
||||
grad_scaler = torch.cuda.amp.GradScaler(enabled=wandb.config.AMP)
|
||||
criterion = torch.nn.BCEWithLogitsLoss()
|
||||
dice_loss = DiceLoss()
|
||||
|
||||
# save model.onxx
|
||||
dummy_input = torch.randn(
|
||||
1, wandb.config.N_CHANNELS, wandb.config.IMG_SIZE, wandb.config.IMG_SIZE, requires_grad=True
|
||||
).to(device)
|
||||
torch.onnx.export(net, dummy_input, "checkpoints/model-0.onnx")
|
||||
torch.onnx.export(net, dummy_input, "checkpoints/model.onnx")
|
||||
artifact = wandb.Artifact("onnx", type="model")
|
||||
artifact.add_file("checkpoints/model-0.onnx")
|
||||
wandb.run.log_artifact(artifact)
|
||||
|
||||
# log gradients and weights four time per epoch
|
||||
wandb.watch(net, criterion, log_freq=100)
|
||||
wandb.watch(net, log_freq=100)
|
||||
|
||||
# print the config
|
||||
logging.info(f"wandb config:\n{yaml.dump(wandb.config.as_dict())}")
|
||||
|
@ -176,6 +182,8 @@ if __name__ == "__main__":
|
|||
pred_masks = net(images)
|
||||
train_loss = criterion(pred_masks, true_masks)
|
||||
|
||||
# compute loss
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
grad_scaler.scale(train_loss).backward()
|
||||
|
@ -185,7 +193,7 @@ if __name__ == "__main__":
|
|||
# compute metrics
|
||||
pred_masks_bin = (torch.sigmoid(pred_masks) > 0.5).float()
|
||||
accuracy = (true_masks == pred_masks_bin).float().mean()
|
||||
dice = dice_coeff(pred_masks_bin, true_masks)
|
||||
dice = dice_loss.coeff(pred_masks, true_masks)
|
||||
mae = torch.nn.functional.l1_loss(pred_masks_bin, true_masks)
|
||||
|
||||
# update tqdm progress bar
|
||||
|
@ -197,13 +205,13 @@ if __name__ == "__main__":
|
|||
{
|
||||
"epoch": epoch - 1 + step / len(train_loader),
|
||||
"train/accuracy": accuracy,
|
||||
"train/bce": train_loss,
|
||||
"train/loss": train_loss,
|
||||
"train/dice": dice,
|
||||
"train/mae": mae,
|
||||
}
|
||||
)
|
||||
|
||||
if step and (step % 250 == 0 or step == len(train_loader)):
|
||||
if step and (step % 100 == 0 or step == len(train_loader)):
|
||||
# Evaluation round
|
||||
net.eval()
|
||||
accuracy = 0
|
||||
|
@ -223,10 +231,10 @@ if __name__ == "__main__":
|
|||
|
||||
# compute metrics
|
||||
val_loss += criterion(masks_pred, masks_true)
|
||||
dice += dice_loss.coeff(pred_masks, true_masks)
|
||||
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
|
||||
mae += torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
|
||||
accuracy += (masks_true == masks_pred_bin).float().mean()
|
||||
dice += dice_coeff(masks_pred_bin, masks_true)
|
||||
|
||||
# update progress bar
|
||||
pbar2.update(images.shape[0])
|
||||
|
@ -267,7 +275,7 @@ if __name__ == "__main__":
|
|||
"val/predictions": table,
|
||||
"train/learning_rate": optimizer.state_dict()["param_groups"][0]["lr"],
|
||||
"val/accuracy": accuracy,
|
||||
"val/bce": val_loss,
|
||||
"val/loss": val_loss,
|
||||
"val/dice": dice,
|
||||
"val/mae": mae,
|
||||
},
|
||||
|
@ -276,7 +284,7 @@ if __name__ == "__main__":
|
|||
|
||||
# update hyperparameters
|
||||
net.train()
|
||||
scheduler.step(dice)
|
||||
scheduler.step(train_loss)
|
||||
|
||||
# export model to onnx format when validation ends
|
||||
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
|
||||
|
@ -304,10 +312,10 @@ if __name__ == "__main__":
|
|||
|
||||
# compute metrics
|
||||
val_loss += criterion(masks_pred, masks_true)
|
||||
dice += dice_loss.coeff(pred_masks, true_masks)
|
||||
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
|
||||
mae += torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
|
||||
accuracy += (masks_true == masks_pred_bin).float().mean()
|
||||
dice += dice_coeff(masks_pred_bin, masks_true)
|
||||
|
||||
# update progress bar
|
||||
pbar3.update(images.shape[0])
|
||||
|
@ -347,7 +355,7 @@ if __name__ == "__main__":
|
|||
{
|
||||
"test/predictions": table,
|
||||
"test/accuracy": accuracy,
|
||||
"test/bce": val_loss,
|
||||
"test/loss": val_loss,
|
||||
"test/dice": dice,
|
||||
"test/mae": mae,
|
||||
},
|
||||
|
|
|
@ -1,80 +1,22 @@
|
|||
import torch
|
||||
from torch import Tensor
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon=1e-6) -> float:
|
||||
"""Average of Dice coefficient for all batches, or for a single mask.
|
||||
class DiceLoss(nn.Module):
|
||||
def __init__(self, weight=None, size_average=True):
|
||||
super(DiceLoss, self).__init__()
|
||||
|
||||
Args:
|
||||
input (Tensor): _description_
|
||||
target (Tensor): _description_
|
||||
reduce_batch_first (bool, optional): _description_. Defaults to False.
|
||||
epsilon (_type_, optional): _description_. Defaults to 1e-6.
|
||||
@staticmethod
|
||||
def coeff(inputs, targets, smooth=1):
|
||||
# comment out if your model contains a sigmoid or equivalent activation layer
|
||||
inputs = torch.sigmoid(inputs)
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
# flatten label and prediction tensors
|
||||
inputs = inputs.view(-1)
|
||||
targets = targets.view(-1)
|
||||
|
||||
Returns:
|
||||
float: _description_
|
||||
"""
|
||||
assert input.size() == target.size()
|
||||
intersection = (inputs * targets).sum()
|
||||
return (2.0 * intersection + smooth) / (inputs.sum() + targets.sum() + smooth)
|
||||
|
||||
if input.dim() == 2 and reduce_batch_first:
|
||||
raise ValueError(f"Dice: asked to reduce batch but got tensor without batch dimension (shape {input.shape})")
|
||||
|
||||
if input.dim() == 2 or reduce_batch_first:
|
||||
inter = torch.dot(input.reshape(-1), target.reshape(-1))
|
||||
sets_sum = torch.sum(input) + torch.sum(target)
|
||||
|
||||
if sets_sum.item() == 0:
|
||||
sets_sum = 2 * inter
|
||||
|
||||
return (2 * inter + epsilon) / (sets_sum + epsilon)
|
||||
else:
|
||||
# compute and average metric for each batch element
|
||||
dice = 0
|
||||
|
||||
for i in range(input.shape[0]):
|
||||
dice += dice_coeff(input[i, ...], target[i, ...])
|
||||
|
||||
return dice / input.shape[0]
|
||||
|
||||
|
||||
def multiclass_dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon=1e-6) -> float:
|
||||
"""Average of Dice coefficient for all classes.
|
||||
|
||||
Args:
|
||||
input (Tensor): _description_
|
||||
target (Tensor): _description_
|
||||
reduce_batch_first (bool, optional): _description_. Defaults to False.
|
||||
epsilon (_type_, optional): _description_. Defaults to 1e-6.
|
||||
|
||||
Returns:
|
||||
float: _description_
|
||||
"""
|
||||
assert input.size() == target.size()
|
||||
|
||||
dice = 0
|
||||
|
||||
for channel in range(input.shape[1]):
|
||||
dice += dice_coeff(input[:, channel, ...], target[:, channel, ...], reduce_batch_first, epsilon)
|
||||
|
||||
return dice / input.shape[1]
|
||||
|
||||
|
||||
def dice_loss(input: Tensor, target: Tensor, multiclass: bool = False) -> float:
|
||||
"""Dice loss (objective to minimize) between 0 and 1.
|
||||
|
||||
Args:
|
||||
input (Tensor): _description_
|
||||
target (Tensor): _description_
|
||||
multiclass (bool, optional): _description_. Defaults to False.
|
||||
|
||||
Returns:
|
||||
float: _description_
|
||||
"""
|
||||
assert input.size() == target.size()
|
||||
|
||||
fn = multiclass_dice_coeff if multiclass else dice_coeff
|
||||
|
||||
return 1 - fn(input, target, reduce_batch_first=True)
|
||||
def forward(self, inputs, targets, smooth=1):
|
||||
return 1 - self.coeff(inputs, targets, smooth)
|
||||
|
|
|
@ -24,7 +24,7 @@ class RandomPaste(A.DualTransform):
|
|||
nb,
|
||||
path_paste_img_dir,
|
||||
path_paste_mask_dir,
|
||||
scale_range=(0.1, 0.2),
|
||||
scale_range=(0.05, 0.25),
|
||||
always_apply=True,
|
||||
p=1.0,
|
||||
):
|
||||
|
|
Loading…
Reference in a new issue