From 218fc38ca5aa8b6daa6cf60b153ac846383ffc96 Mon Sep 17 00:00:00 2001 From: milesial Date: Tue, 17 Aug 2021 22:25:24 +0200 Subject: [PATCH] Fix README instructions Former-commit-id: 3675576533ceb82671f2ee01eca0adb55786dd8d --- README.md | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index 2a7b437..56d5cc9 100644 --- a/README.md +++ b/README.md @@ -19,11 +19,11 @@ Customized implementation of the [U-Net](https://arxiv.org/abs/1505.04597) in Py ## Quick start using Docker 1. [Install Docker 19.03 or later:](https://docs.docker.com/get-docker/) -``` +```bash curl https://get.docker.com | sh && sudo systemctl --now enable docker ``` 2. [Install the NVIDIA container toolkit:](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) -``` +```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list @@ -32,12 +32,12 @@ sudo apt-get install -y nvidia-docker2 sudo systemctl restart docker ``` 3. [Download and run the image:](https://hub.docker.com/repository/docker/milesial/unet) -``` -sudo docker run --rm --gpus all milesial/unet +```bash +sudo docker run --rm --gpus all -it milesial/unet ``` 4. Download the data and run training: -``` +```bash bash scripts/download_data.sh python train.py --amp ``` @@ -55,15 +55,14 @@ This model was trained from scratch with 5000 images (no data augmentation) and A docker image containing the code and the dependencies is available on [DockerHub](https://hub.docker.com/repository/docker/milesial/unet). You can **download and jump in the container** with ([docker >=19.03](https://docs.docker.com/get-docker/)): -```shell script +```console docker run -it --rm --gpus all milesial/unet ``` - ### Training -```shell script +```console > python train.py -h usage: train.py [-h] [--epochs E] [--batch-size B] [--learning-rate LR] [--load LOAD] [--scale SCALE] [--validation VAL] [--amp] @@ -101,7 +100,7 @@ To predict a multiple images and show them without saving them: `python predict.py -i image1.jpg image2.jpg --viz --no-save` -```shell script +```console > python predict.py -h usage: predict.py [-h] [--model FILE] --input INPUT [INPUT ...] [--output INPUT [INPUT ...]] [--viz] [--no-save] @@ -147,7 +146,7 @@ The Carvana data is available on the [Kaggle website](https://www.kaggle.com/c/c You can also download it using the helper script: -```shell script +``` bash scripts/download_data.sh ```