Merge pull request #353 from Gouvernathor/patch-1

Various minor changes

Former-commit-id: e36c782fbfc976b7326182a47dd7213bd3360a7e
This commit is contained in:
milesial 2022-04-11 23:56:51 +02:00 committed by GitHub
commit 408f2c9ec2
3 changed files with 10 additions and 8 deletions

1
.gitignore vendored
View file

@ -6,3 +6,4 @@ checkpoints/
*.jpg *.jpg
venv/ venv/
.idea/ .idea/
wandb/

View file

@ -72,10 +72,10 @@ def train_net(net,
global_step = 0 global_step = 0
# 5. Begin training # 5. Begin training
for epoch in range(epochs): for epoch in range(1, epochs+1):
net.train() net.train()
epoch_loss = 0 epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar: with tqdm(total=n_train, desc=f'Epoch {epoch}/{epochs}', unit='img') as pbar:
for batch in train_loader: for batch in train_loader:
images = batch['image'] images = batch['image']
true_masks = batch['mask'] true_masks = batch['mask']
@ -139,8 +139,8 @@ def train_net(net,
if save_checkpoint: if save_checkpoint:
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True) Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch + 1))) torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch)))
logging.info(f'Checkpoint {epoch + 1} saved!') logging.info(f'Checkpoint {epoch} saved!')
def get_args(): def get_args():
@ -155,6 +155,7 @@ def get_args():
help='Percent of the data that is used as validation (0-100)') help='Percent of the data that is used as validation (0-100)')
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision') parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling') parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
return parser.parse_args() return parser.parse_args()
@ -169,7 +170,7 @@ if __name__ == '__main__':
# Change here to adapt to your data # Change here to adapt to your data
# n_channels=3 for RGB images # n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel # n_classes is the number of probabilities you want to get per pixel
net = UNet(n_channels=3, n_classes=2, bilinear=args.bilinear) net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)
logging.info(f'Network:\n' logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n' f'\t{net.n_channels} input channels\n'
@ -193,4 +194,4 @@ if __name__ == '__main__':
except KeyboardInterrupt: except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth') torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt') logging.info('Saved interrupt')
sys.exit(0) raise

View file

@ -58,8 +58,8 @@ class BasicDataset(Dataset):
mask_file = list(self.masks_dir.glob(name + self.mask_suffix + '.*')) mask_file = list(self.masks_dir.glob(name + self.mask_suffix + '.*'))
img_file = list(self.images_dir.glob(name + '.*')) img_file = list(self.images_dir.glob(name + '.*'))
assert len(mask_file) == 1, f'Either no mask or multiple masks found for the ID {name}: {mask_file}'
assert len(img_file) == 1, f'Either no image or multiple images found for the ID {name}: {img_file}' assert len(img_file) == 1, f'Either no image or multiple images found for the ID {name}: {img_file}'
assert len(mask_file) == 1, f'Either no mask or multiple masks found for the ID {name}: {mask_file}'
mask = self.load(mask_file[0]) mask = self.load(mask_file[0])
img = self.load(img_file[0]) img = self.load(img_file[0])