wtf am i doing

Former-commit-id: dde43cce52408ec8f67372b365796b9014ceee57
This commit is contained in:
Your Name 2022-06-28 11:36:43 +02:00
parent ad179241ce
commit 842aaa81c2
4 changed files with 151 additions and 249 deletions

View file

@ -0,0 +1 @@
94f4597495259e6d28987c9ec3b6b2aa43df9810

View file

@ -2,7 +2,7 @@ import torch
import torch.nn.functional as F
from tqdm import tqdm
from src.utils.dice import multiclass_dice_coeff, dice_coeff
from src.utils.dice import dice_coeff, multiclass_dice_coeff
def evaluate(net, dataloader, device):
@ -11,32 +11,23 @@ def evaluate(net, dataloader, device):
dice_score = 0
# iterate over the validation set
for batch in tqdm(dataloader, total=num_val_batches, desc="Validation round", unit="batch", leave=False):
image, mask_true = batch["image"], batch["mask"]
# move images and labels to correct device and type
image = image.to(device=device, dtype=torch.float32)
mask_true = mask_true.to(device=device, dtype=torch.long)
mask_true = F.one_hot(mask_true, net.n_classes).permute(0, 3, 1, 2).float()
with tqdm(dataloader, total=len(dataloader.dataset), desc="Validation", unit="img", leave=False) as pbar:
for images, masks_true in dataloader:
# move images and labels to correct device
images = images.to(device=device)
masks_true = masks_true.unsqueeze(1).to(device=device)
with torch.no_grad():
# predict the mask
mask_pred = net(image)
with torch.inference_mode():
# predict the mask
masks_pred = net(images)
masks_pred = (torch.sigmoid(masks_pred) > 0.5).float()
# convert to one-hot format
if net.n_classes == 1:
mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
# compute the Dice score
dice_score += dice_coeff(mask_pred, mask_true, reduce_batch_first=False)
else:
mask_pred = F.one_hot(mask_pred.argmax(dim=1), net.n_classes).permute(0, 3, 1, 2).float()
# compute the Dice score, ignoring background
dice_score += multiclass_dice_coeff(
mask_pred[:, 1:, ...], mask_true[:, 1:, ...], reduce_batch_first=False
)
dice_score += dice_coeff(masks_pred, masks_true, reduce_batch_first=False)
pbar.update(images.shape[0])
net.train()
# Fixes a potential division by zero error
if num_val_batches == 0:
return dice_score
return dice_score / num_val_batches
return dice_score / num_val_batches if num_val_batches else dice_score

View file

@ -19,159 +19,12 @@ from unet import UNet
from utils.paste import RandomPaste
CHECKPOINT_DIR = Path("./checkpoints/")
DIR_TRAIN_IMG = Path("/home/lilian/data_disk/lfainsin/train2017")
DIR_VALID_IMG = Path("/home/lilian/data_disk/lfainsin/val2017/")
# DIR_VALID_MASK = Path("/home/lilian/data_disk/lfainsin/val2017mask/")
DIR_TRAIN_IMG = Path("/home/lilian/data_disk/lfainsin/smoltrain2017")
DIR_VALID_IMG = Path("/home/lilian/data_disk/lfainsin/smolval2017/")
DIR_SPHERE_IMG = Path("/home/lilian/data_disk/lfainsin/spheres/Images/")
DIR_SPHERE_MASK = Path("/home/lilian/data_disk/lfainsin/spheres/Masks/")
def train_net(
net,
device,
epochs: int = 5,
batch_size: int = 1,
learning_rate: float = 1e-5,
save_checkpoint: bool = True,
amp: bool = False,
):
# 1. Create transforms
tf_train = A.Compose(
[
A.Flip(),
A.ColorJitter(),
RandomPaste(5, 0.2, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
A.ISONoise(),
A.ToFloat(max_value=255),
A.pytorch.ToTensorV2(),
],
)
tf_valid = A.Compose(
[
RandomPaste(5, 0.2, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
A.ToFloat(max_value=255),
ToTensorV2(),
],
)
# 2. Create datasets
ds_train = SphereDataset(images_dir=DIR_TRAIN_IMG, transform=tf_train)
# ds_valid = SphereDataset(images_dir=DIR_VALID_IMG, masks_dir=DIR_VALID_MASK, transform=tf_valid)
ds_valid = SphereDataset(images_dir=DIR_VALID_IMG, transform=tf_valid)
# 3. Create data loaders
loader_args = dict(batch_size=batch_size, num_workers=4, pin_memory=True)
train_loader = DataLoader(ds_train, shuffle=True, **loader_args)
val_loader = DataLoader(ds_valid, shuffle=False, drop_last=True, **loader_args)
# (Initialize logging)
experiment = wandb.init(
project="U-Net",
config=dict(
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
save_checkpoint=save_checkpoint,
amp=amp,
),
)
logging.info(
f"""Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {learning_rate}
Training size: {len(ds_train)}
Validation size: {len(ds_valid)}
Checkpoints: {save_checkpoint}
Device: {device.type}
Mixed Precision: {amp}
"""
)
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(net.parameters(), lr=learning_rate, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
criterion = nn.CrossEntropyLoss()
global_step = 0
# 5. Begin training
for epoch in range(1, epochs + 1):
net.train()
epoch_loss = 0
with tqdm(total=len(ds_train), desc=f"Epoch {epoch}/{epochs}", unit="img") as pbar:
for batch in train_loader:
images = batch["image"]
true_masks = batch["mask"]
assert images.shape[1] == net.n_channels, (
f"Network has been defined with {net.n_channels} input channels, "
f"but loaded images have {images.shape[1]} channels. Please check that "
"the images are loaded correctly."
)
images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.cuda.amp.autocast(enabled=amp):
masks_pred = net(images)
loss = criterion(masks_pred, true_masks) + dice_loss(
F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True,
)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
experiment.log({"train loss": loss.item(), "step": global_step, "epoch": epoch})
pbar.set_postfix(**{"loss (batch)": loss.item()})
# Evaluation round
division_step = len(ds_train) // (10 * batch_size)
if division_step > 0:
if global_step % division_step == 0:
histograms = {}
for tag, value in net.named_parameters():
tag = tag.replace("/", ".")
histograms["Weights/" + tag] = wandb.Histogram(value.data.cpu())
histograms["Gradients/" + tag] = wandb.Histogram(value.grad.data.cpu())
val_score = evaluate(net, val_loader, device)
scheduler.step(val_score)
logging.info("Validation Dice score: {}".format(val_score))
experiment.log(
{
"learning rate": optimizer.param_groups[0]["lr"],
"validation Dice": val_score,
"images": wandb.Image(images[0].cpu()),
"masks": {
"true": wandb.Image(true_masks[0].float().cpu()),
"pred": wandb.Image(
torch.softmax(masks_pred, dim=1).argmax(dim=1)[0].float().cpu()
),
},
"step": global_step,
"epoch": epoch,
**histograms,
}
)
if save_checkpoint:
Path(CHECKPOINT_DIR).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(CHECKPOINT_DIR / "checkpoint_epoch{}.pth".format(epoch)))
logging.info(f"Checkpoint {epoch} saved!")
def get_args():
parser = argparse.ArgumentParser(
description="Train the UNet on images and target masks",
@ -190,7 +43,7 @@ def get_args():
dest="batch_size",
metavar="B",
type=int,
default=32,
default=10,
help="Batch size",
)
parser.add_argument(
@ -226,39 +79,148 @@ def get_args():
return parser.parse_args()
if __name__ == "__main__":
def main():
# get args from cli
args = get_args()
# setup logging
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
# enable cuda, if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device {device}")
# 0. Create network
net = UNet(n_channels=3, n_classes=args.classes)
logging.info(
f"""Network:
\t{net.n_channels} input channels
\t{net.n_classes} output channels (classes)
input channels: {net.n_channels}
output channels: {net.n_classes}
"""
)
# Load weights, if needed
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f"Model loaded from {args.load}")
# transfer network to device
net.to(device=device)
try:
train_net(
net=net,
# 1. Create transforms
tf_train = A.Compose(
[
A.Resize(500, 500),
A.Flip(),
A.ColorJitter(),
RandomPaste(5, 0.2, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
A.ISONoise(),
A.ToFloat(max_value=255),
A.pytorch.ToTensorV2(),
],
)
tf_valid = A.Compose(
[
A.Resize(500, 500),
RandomPaste(5, 0.2, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
A.ToFloat(max_value=255),
ToTensorV2(),
],
)
# 2. Create datasets
ds_train = SphereDataset(image_dir=DIR_TRAIN_IMG, transform=tf_train)
ds_valid = SphereDataset(image_dir=DIR_VALID_IMG, transform=tf_valid)
# 3. Create data loaders
loader_args = dict(batch_size=args.batch_size, num_workers=4, pin_memory=True)
train_loader = DataLoader(ds_train, shuffle=True, **loader_args)
val_loader = DataLoader(ds_valid, shuffle=False, drop_last=True, **loader_args)
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(net.parameters(), lr=args.lr, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
criterion = nn.BCEWithLogitsLoss()
# connect to wandb
wandb.init(
project="U-Net",
config=dict(
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
amp=args.amp,
)
),
)
logging.info(
f"""Starting training:
Epochs: {args.epochs}
Batch size: {args.batch_size}
Learning rate: {args.lr}
Training size: {len(ds_train)}
Validation size: {len(ds_valid)}
Device: {device.type}
Mixed Precision: {args.amp}
"""
)
try:
for epoch in range(1, args.epochs + 1):
with tqdm(total=len(ds_train), desc=f"{epoch}/{args.epochs}", unit="img") as pbar:
# Training round
for step, (images, true_masks) in enumerate(train_loader):
assert images.shape[1] == net.n_channels, (
f"Network has been defined with {net.n_channels} input channels, "
f"but loaded images have {images.shape[1]} channels. Please check that "
"the images are loaded correctly."
)
images = images.to(device=device)
true_masks = true_masks.unsqueeze(1).to(device=device)
with torch.cuda.amp.autocast(enabled=args.amp):
masks_pred = net(images)
train_loss = criterion(masks_pred, true_masks) # TODO: rajouter le diceloss
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(train_loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
pbar.set_postfix(**{"loss": train_loss.item()})
wandb.log( # log training metrics
{
"train/epoch": epoch + step / epoch,
"train/train_loss": train_loss,
}
)
# Evaluation round
val_loss = evaluate(net, val_loader, device)
scheduler.step(val_loss)
wandb.log( # log validation metrics
{
"val/val_loss": val_loss,
}
)
print(f"Train Loss: {train_loss:.3f}, Valid Loss: {val_loss:3f}")
# save weights when epoch end
Path(CHECKPOINT_DIR).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(CHECKPOINT_DIR / "checkpoint_epoch{}.pth".format(epoch)))
logging.info(f"Checkpoint {epoch} saved!")
except KeyboardInterrupt:
torch.save(net.state_dict(), "INTERRUPTED.pth")
logging.info("Saved interrupt")
raise
if __name__ == "__main__":
main()

View file

@ -1,81 +1,29 @@
import logging
from os import listdir
from os.path import splitext
from pathlib import Path
import os
import albumentations as A
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
class SphereDataset(Dataset):
def __init__(self, images_dir: str, transform: A.Compose, masks_dir: str = None):
self.images_dir = Path(images_dir)
self.masks_dir = Path(masks_dir) if masks_dir else None
self.ids = [splitext(file)[0] for file in listdir(images_dir) if not file.startswith(".")]
if not self.ids:
raise RuntimeError(f"No input file found in {images_dir}, make sure you put your images there")
logging.info(f"Creating dataset with {len(self.ids)} examples")
def __init__(self, image_dir, transform=None):
self.image_dir = image_dir
self.transform = transform
self.images = os.listdir(image_dir)
def __len__(self):
return len(self.ids)
return len(self.images)
@staticmethod
def preprocess(pil_img, scale, is_mask):
w, h = pil_img.size
newW, newH = int(scale * w), int(scale * h)
def __getitem__(self, index):
img_path = os.path.join(self.image_dir, self.images[index])
image = np.array(Image.open(img_path).convert("RGB"), dtype=np.uint8)
assert newW > 0 and newH > 0, "Scale is too small, resized images would have no pixel"
mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.float32)
pil_img = pil_img.resize((newW, newH), resample=Image.NEAREST if is_mask else Image.BICUBIC)
img_ndarray = np.asarray(pil_img)
if self.transform is not None:
augmentations = self.transform(image=image, mask=mask)
image = augmentations["image"]
mask = augmentations["mask"]
if not is_mask:
if img_ndarray.ndim == 2:
img_ndarray = img_ndarray[np.newaxis, ...]
else:
img_ndarray = img_ndarray.transpose((2, 0, 1))
img_ndarray = img_ndarray / 255
return img_ndarray
@staticmethod
def load(filename):
ext = splitext(filename)[1]
if ext in [".npz", ".npy"]:
return Image.fromarray(np.load(filename))
elif ext in [".pt", ".pth"]:
return Image.fromarray(torch.load(filename).numpy())
else:
return Image.open(filename)
def __getitem__(self, idx):
name = self.ids[idx]
mask_file = list(self.masks_dir.glob(name + self.mask_suffix + ".*"))
img_file = list(self.images_dir.glob(name + ".*"))
assert len(img_file) == 1, f"Either no image or multiple images found for the ID {name}: {img_file}"
assert len(mask_file) == 1, f"Either no mask or multiple masks found for the ID {name}: {mask_file}"
mask = self.load(mask_file[0])
img = self.load(img_file[0])
assert (
img.size == mask.size
), f"Image and mask {name} should be the same size, but are {img.size} and {mask.size}"
img = self.preprocess(img, self.scale, is_mask=False)
mask = self.preprocess(mask, self.scale, is_mask=True)
return {
"image": torch.as_tensor(img.copy()).float().contiguous(),
"mask": torch.as_tensor(mask.copy()).long().contiguous(),
}
return image, mask