chore: bunch of small stuff

Former-commit-id: e6eea69309c723face4c1f09ad935451ce715eee [formerly f59c07f943f0cddc6db2a0512923f2960a2400bd]
Former-commit-id: 0e2f44ec2b051ca2b31fe16c59e6702a6890701c
This commit is contained in:
Laurent Fainsin 2022-09-12 09:28:29 +02:00
parent b701afe363
commit 85c2febcac
4 changed files with 82 additions and 43 deletions

File diff suppressed because one or more lines are too long

View file

@ -47,7 +47,6 @@ if __name__ == "__main__":
) )
# load checkpoint # load checkpoint
# module.load_state_dict(torch.load()["state_dict"])
# module.load_from_checkpoint("/tmp/model.ckpt") # module.load_from_checkpoint("/tmp/model.ckpt")
# log gradients and weights regularly # log gradients and weights regularly
@ -68,10 +67,10 @@ if __name__ == "__main__":
precision=wandb.config.PRECISION, precision=wandb.config.PRECISION,
logger=logger, logger=logger,
log_every_n_steps=5, log_every_n_steps=5,
val_check_interval=50, val_check_interval=200,
callbacks=[ callbacks=[
EarlyStopping(monitor="valid/map", mode="max", patience=10, min_delta=0.01), EarlyStopping(monitor="valid/bbox/map", mode="max", patience=10, min_delta=0.01),
ModelCheckpoint(monitor="valid/map", mode="max"), ModelCheckpoint(monitor="valid/bbox/map", mode="max"),
# ModelPruning("l1_unstructured", amount=0.5), # ModelPruning("l1_unstructured", amount=0.5),
LearningRateMonitor(log_momentum=True), LearningRateMonitor(log_momentum=True),
RichModelSummary(max_depth=2), RichModelSummary(max_depth=2),

View file

@ -24,7 +24,7 @@ class RandomPaste(A.DualTransform):
self, self,
nb, nb,
image_dir, image_dir,
scale_range=(0.05, 0.5), scale_range=(0.02, 0.3),
always_apply=True, always_apply=True,
p=1.0, p=1.0,
): ):

View file

@ -28,17 +28,17 @@ WORKERS:
value: 16 value: 16
EPOCHS: EPOCHS:
value: 100 value: 50
TRAIN_BATCH_SIZE: TRAIN_BATCH_SIZE:
value: 10 value: 6
VALID_BATCH_SIZE: VALID_BATCH_SIZE:
value: 2 value: 2
PREFETCH_FACTOR: PREFETCH_FACTOR:
value: 2 value: 2
LEARNING_RATE: LEARNING_RATE:
value: 0.0005 value: 0.001
WEIGHT_DECAY: WEIGHT_DECAY:
value: 0.0005 value: 0.0001
MOMENTUM: MOMENTUM:
value: 0.9 value: 0.9