feat: use wandb config instead of args

Former-commit-id: ffb1cb9a6e978c41b3b62388c657ccdb13c4ad67 [formerly d557639e5a203e2ba44ebcf4466c42074f215fa0]
Former-commit-id: 0d3dd6a81a66348fd4caa840a2727680554854f3
This commit is contained in:
Laurent Fainsin 2022-06-30 14:04:02 +02:00
parent f4ed2f799e
commit 8c9ed80c6a

View file

@ -1,13 +1,9 @@
import argparse
import logging
from pathlib import Path
import albumentations as A
import torch
import torch.nn as nn
import torch.onnx
import yaml
from albumentations.pytorch import ToTensorV2
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
@ -17,98 +13,42 @@ from src.utils.dataset import SphereDataset
from unet import UNet
from utils.paste import RandomPaste
CHECKPOINT_DIR = Path("./checkpoints/")
DIR_TRAIN_IMG = Path("/home/lilian/data_disk/lfainsin/smolval2017")
DIR_VALID_IMG = Path("/home/lilian/data_disk/lfainsin/smoltrain2017/")
DIR_SPHERE_IMG = Path("/home/lilian/data_disk/lfainsin/spheres/Images/")
DIR_SPHERE_MASK = Path("/home/lilian/data_disk/lfainsin/spheres/Masks/")
def get_args():
parser = argparse.ArgumentParser(
description="Train the UNet on images and target masks",
)
parser.add_argument(
"--epochs",
"-e",
metavar="E",
type=int,
default=5,
help="Number of epochs",
)
parser.add_argument(
"--batch-size",
"-b",
dest="batch_size",
metavar="B",
type=int,
default=70,
help="Batch size",
)
parser.add_argument(
"--learning-rate",
"-l",
metavar="LR",
type=float,
default=1e-5,
help="Learning rate",
dest="lr",
)
parser.add_argument(
"--load",
"-f",
type=str,
default=False,
help="Load model from a .pth file",
)
parser.add_argument(
"--amp",
action="store_true",
default=True,
help="Use mixed precision",
)
parser.add_argument(
"--classes",
"-c",
type=int,
default=1,
help="Number of classes",
)
return parser.parse_args()
def main():
# get args from cli
args = get_args()
# setup logging
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
# enable cuda, if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device {device}")
# enable cudnn benchmarking
# torch.backends.cudnn.benchmark = True
# 0. Create network
features = [16, 32, 64, 128]
net = UNet(n_channels=3, n_classes=args.classes, features=features)
nb_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
logging.info(
f"""Network:
input channels: {net.n_channels}
output channels: {net.n_classes}
nb parameters: {nb_params}
features: {features}
"""
# setup wandb
wandb.init(
project="U-Net",
config=dict(
n_channels=3,
n_classes=1,
epochs=5,
batch_size=70,
learning_rate=1e-5,
amp=True,
num_workers=8,
pin_memory=True,
features=[16, 32, 64, 128],
benchmark=False,
device=device.type,
DIR_TRAIN_IMG="/home/lilian/data_disk/lfainsin/val2017",
DIR_VALID_IMG="/home/lilian/data_disk/lfainsin/smoltrain2017/",
DIR_SPHERE_IMG="/home/lilian/data_disk/lfainsin/spheres/Images/",
DIR_SPHERE_MASK="/home/lilian/data_disk/lfainsin/spheres/Masks/",
),
)
# Load weights, if needed
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f"Model loaded from {args.load}")
# enable cudnn benchmarking
torch.backends.cudnn.benchmark = wandb.config.benchmark
# 0. Create network
net = UNet(n_channels=3, n_classes=wandb.config.n_classes, features=wandb.config.features)
wandb.config.params = sum(p.numel() for p in net.parameters() if p.requires_grad)
# save initial model.pth
torch.save(net.state_dict(), "model.pth")
@ -122,7 +62,7 @@ def main():
A.Resize(512, 512),
A.Flip(),
A.ColorJitter(),
RandomPaste(5, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
RandomPaste(5, wandb.config.DIR_SPHERE_IMG, wandb.config.DIR_SPHERE_MASK),
A.GaussianBlur(),
A.ISONoise(),
A.ToFloat(max_value=255),
@ -132,59 +72,50 @@ def main():
tf_valid = A.Compose(
[
A.Resize(512, 512),
RandomPaste(5, DIR_SPHERE_IMG, DIR_SPHERE_MASK),
RandomPaste(5, wandb.config.DIR_SPHERE_IMG, wandb.config.DIR_SPHERE_MASK),
A.ToFloat(max_value=255),
ToTensorV2(),
],
)
# 2. Create datasets
ds_train = SphereDataset(image_dir=DIR_TRAIN_IMG, transform=tf_train)
ds_valid = SphereDataset(image_dir=DIR_VALID_IMG, transform=tf_valid)
ds_train = SphereDataset(image_dir=wandb.config.DIR_TRAIN_IMG, transform=tf_train)
ds_valid = SphereDataset(image_dir=wandb.config.DIR_VALID_IMG, transform=tf_valid)
# 3. Create data loaders
loader_args = dict(batch_size=args.batch_size, num_workers=8, pin_memory=True)
loader_args = dict(
batch_size=wandb.config.batch_size, num_workers=wandb.config.num_workers, pin_memory=wandb.config.pin_memory
)
train_loader = DataLoader(ds_train, shuffle=True, **loader_args)
val_loader = DataLoader(ds_valid, shuffle=False, drop_last=True, **loader_args)
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(net.parameters(), lr=args.lr, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2)
grad_scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.RMSprop(net.parameters(), lr=wandb.config.learning_rate, weight_decay=1e-8, momentum=0.9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2)
grad_scaler = torch.cuda.amp.GradScaler(enabled=wandb.config.amp)
criterion = torch.nn.BCEWithLogitsLoss()
# setup wandb
wandb.init(
project="U-Net-tmp",
config=dict(
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
amp=args.amp,
features=features,
parameters=nb_params,
),
)
wandb.watch(net, log_freq=len(ds_train) // args.batch_size // 4)
artifact = wandb.Artifact("model", type="model")
# save model.pth
wandb.watch(net, log_freq=100)
artifact = wandb.Artifact("pth", type="model")
artifact.add_file("model.pth")
wandb.run.log_artifact(artifact)
logging.info("model.pth saved")
logging.info(
f"""Starting training:
Epochs: {args.epochs}
Batch size: {args.batch_size}
Learning rate: {args.lr}
Training size: {len(ds_train)}
Validation size: {len(ds_valid)}
Device: {device.type}
Mixed Precision: {args.amp}
"""
)
# save model.onxx
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
torch.onnx.export(net, dummy_input, "model.onnx")
artifact = wandb.Artifact("onnx", type="model")
artifact.add_file("model.onnx")
wandb.run.log_artifact(artifact)
logging.info("model.onnx saved")
# print the config
logging.info(f"wandb config:\n{yaml.dump(wandb.config.as_dict())}")
try:
for epoch in range(1, args.epochs + 1):
with tqdm(total=len(ds_train), desc=f"{epoch}/{args.epochs}", unit="img") as pbar:
for epoch in range(1, wandb.config.epochs + 1):
with tqdm(total=len(ds_train), desc=f"{epoch}/{wandb.config.epochs}", unit="img") as pbar:
# Training round
for step, (images, true_masks) in enumerate(train_loader):
@ -199,7 +130,7 @@ def main():
true_masks = true_masks.unsqueeze(1).to(device=device)
# forward
with torch.cuda.amp.autocast(enabled=args.amp):
with torch.cuda.amp.autocast(enabled=wandb.config.amp):
pred_masks = net(images)
train_loss = criterion(pred_masks, true_masks)
@ -241,14 +172,18 @@ def main():
# save weights when epoch end
torch.save(net.state_dict(), "model.pth")
artifact = wandb.Artifact("model", type="model")
artifact = wandb.Artifact("pth", type="model")
artifact.add_file("model.pth")
wandb.run.log_artifact(artifact)
logging.info(f"model saved!")
logging.info("model.pth saved")
# export model to onnx format
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
torch.onnx.export(net, dummy_input, "model.onnx")
artifact = wandb.Artifact("pnnx", type="model")
artifact.add_file("model.onnx")
wandb.run.log_artifact(artifact)
logging.info("model.onnx saved")
wandb.run.finish()