README update
Former-commit-id: c551c91786f26acc93abed0c043115ab8ef2fce0
This commit is contained in:
parent
c5257f8367
commit
a7270ca699
104
README.md
104
README.md
|
@ -1,6 +1,4 @@
|
|||
# UNet: semantic segmentation with PyTorch
|
||||
|
||||
[![xscode](https://img.shields.io/badge/Available%20on-xs%3Acode-blue?style=?style=plastic&logo=appveyor&logo=)](https://xscode.com/milesial/Pytorch-UNet)
|
||||
# U-Net: Semantic segmentation with PyTorch
|
||||
|
||||
|
||||
![input and output for a random image in the test dataset](https://i.imgur.com/GD8FcB7.png)
|
||||
|
@ -10,13 +8,51 @@ Customized implementation of the [U-Net](https://arxiv.org/abs/1505.04597) in Py
|
|||
|
||||
This model was trained from scratch with 5000 images (no data augmentation) and scored a [dice coefficient](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient) of 0.988423 (511 out of 735) on over 100k test images. This score could be improved with more training, data augmentation, fine tuning, playing with CRF post-processing, and applying more weights on the edges of the masks.
|
||||
|
||||
The Carvana data is available on the [Kaggle website](https://www.kaggle.com/c/carvana-image-masking-challenge/data).
|
||||
|
||||
|
||||
## Usage
|
||||
**Note : Use Python 3.6 or newer**
|
||||
|
||||
### Docker
|
||||
|
||||
A docker image containing the code and the dependencies is available on [DockerHub](https://hub.docker.com/repository/docker/milesial/unet).
|
||||
You can jump in the container with ([docker >=19.03](https://docs.docker.com/get-docker/)):
|
||||
|
||||
```shell script
|
||||
docker run -it --rm --gpus all milesial/unet
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Training
|
||||
|
||||
```shell script
|
||||
> python train.py -h
|
||||
usage: train.py [-h] [--epochs E] [--batch-size B] [--learning-rate LR]
|
||||
[--load LOAD] [--scale SCALE] [--validation VAL] [--amp]
|
||||
|
||||
Train the UNet on images and target masks
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--epochs E, -e E Number of epochs
|
||||
--batch-size B, -b B Batch size
|
||||
--learning-rate LR, -l LR
|
||||
Learning rate
|
||||
--load LOAD, -f LOAD Load model from a .pth file
|
||||
--scale SCALE, -s SCALE
|
||||
Downscaling factor of the images
|
||||
--validation VAL, -v VAL
|
||||
Percent of the data that is used as validation (0-100)
|
||||
--amp Use mixed precision
|
||||
```
|
||||
|
||||
By default, the `scale` is 0.5, so if you wish to obtain better results (but use more memory), set it to 1.
|
||||
The input images and target masks should be in the `data/imgs` and `data/masks` folders respectively. For Carvana, images are RGB and masks are black and white.
|
||||
|
||||
### Prediction
|
||||
|
||||
After training your model and saving it to MODEL.pth, you can easily test the output masks on your images via the CLI.
|
||||
After training your model and saving it to `MODEL.pth`, you can easily test the output masks on your images via the CLI.
|
||||
|
||||
To predict a single image and save it:
|
||||
|
||||
|
@ -38,48 +74,26 @@ optional arguments:
|
|||
-h, --help show this help message and exit
|
||||
--model FILE, -m FILE
|
||||
Specify the file in which the model is stored
|
||||
(default: MODEL.pth)
|
||||
--input INPUT [INPUT ...], -i INPUT [INPUT ...]
|
||||
filenames of input images (default: None)
|
||||
Filenames of input images
|
||||
--output INPUT [INPUT ...], -o INPUT [INPUT ...]
|
||||
Filenames of ouput images (default: None)
|
||||
--viz, -v Visualize the images as they are processed (default:
|
||||
False)
|
||||
--no-save, -n Do not save the output masks (default: False)
|
||||
Filenames of output images
|
||||
--viz, -v Visualize the images as they are processed
|
||||
--no-save, -n Do not save the output masks
|
||||
--mask-threshold MASK_THRESHOLD, -t MASK_THRESHOLD
|
||||
Minimum probability value to consider a mask pixel
|
||||
white (default: 0.5)
|
||||
Minimum probability value to consider a mask pixel white
|
||||
--scale SCALE, -s SCALE
|
||||
Scale factor for the input images (default: 0.5)
|
||||
Scale factor for the input images
|
||||
```
|
||||
You can specify which model file to use with `--model MODEL.pth`.
|
||||
|
||||
### Training
|
||||
### Weights & Biases
|
||||
|
||||
```shell script
|
||||
> python train.py -h
|
||||
usage: train.py [-h] [-e E] [-b [B]] [-l [LR]] [-f LOAD] [-s SCALE] [-v VAL]
|
||||
The training progress can be visualized in real-time using [Weights & Biases](wandb.ai/). Loss curves, validation curves, weights and gradient histograms, as well as predicted masks are logged to the platform.
|
||||
|
||||
Train the UNet on images and target masks
|
||||
When launching a training, a link will be printed in the console. Click on it to go to your dashboard. If you have an existing W&B account, you can link it
|
||||
by setting the `WANDB_API_KEY` environment variable.
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-e E, --epochs E Number of epochs (default: 5)
|
||||
-b [B], --batch-size [B]
|
||||
Batch size (default: 1)
|
||||
-l [LR], --learning-rate [LR]
|
||||
Learning rate (default: 0.1)
|
||||
-f LOAD, --load LOAD Load model from a .pth file (default: False)
|
||||
-s SCALE, --scale SCALE
|
||||
Downscaling factor of the images (default: 0.5)
|
||||
-v VAL, --validation VAL
|
||||
Percent of the data that is used as validation (0-100)
|
||||
(default: 15.0)
|
||||
|
||||
```
|
||||
By default, the `scale` is 0.5, so if you wish to obtain better results (but use more memory), set it to 1.
|
||||
|
||||
The input images and target masks should be in the `data/imgs` and `data/masks` folders respectively.
|
||||
|
||||
### Pretrained model
|
||||
A [pretrained model](https://github.com/milesial/Pytorch-UNet/releases/tag/v1.0) is available for the Carvana dataset. It can also be loaded from torch.hub:
|
||||
|
@ -89,12 +103,14 @@ net = torch.hub.load('milesial/Pytorch-UNet', 'unet_carvana')
|
|||
```
|
||||
The training was done with a 100% scale and bilinear upsampling.
|
||||
|
||||
## Tensorboard
|
||||
You can visualize in real time the train and test losses, the weights and gradients, along with the model predictions with tensorboard:
|
||||
## Data
|
||||
The Carvana data is available on the [Kaggle website](https://www.kaggle.com/c/carvana-image-masking-challenge/data).
|
||||
|
||||
`tensorboard --logdir=runs`
|
||||
You can also download it using your Kaggle API key with:
|
||||
|
||||
You can find a reference training run with the Caravana dataset on [TensorBoard.dev](https://tensorboard.dev/experiment/1m1Ql50MSJixCbG1m9EcDQ/#scalars&_smoothingWeight=0.6) (only scalars are shown currently).
|
||||
```shell script
|
||||
bash download_data.sh <username> <apikey>
|
||||
```
|
||||
|
||||
## Notes on memory
|
||||
|
||||
|
@ -103,9 +119,11 @@ Predicting images of 1918*1280 takes 1.5GB of memory.
|
|||
Training takes much approximately 3GB, so if you are a few MB shy of memory, consider turning off all graphical displays.
|
||||
This assumes you use bilinear up-sampling, and not transposed convolution in the model.
|
||||
|
||||
## Support
|
||||
## Convergence
|
||||
|
||||
See a reference training run with the Caravana dataset on [TensorBoard.dev](https://tensorboard.dev/experiment/1m1Ql50MSJixCbG1m9EcDQ/#scalars&_smoothingWeight=0.6) (only scalars are shown currently).
|
||||
|
||||
|
||||
Personalized support for issues with this repository, or integrating with your own dataset, available on [xs:code](https://xscode.com/milesial/Pytorch-UNet).
|
||||
|
||||
|
||||
---
|
||||
|
|
|
@ -74,7 +74,7 @@ def mask_to_image(mask: np.ndarray):
|
|||
if mask.ndim == 2:
|
||||
return Image.fromarray((mask * 255).astype(np.uint8))
|
||||
elif mask.ndim == 3:
|
||||
return Image.fromarray((np.argmax(mask, dim=0) * 255 / mask.shape[0]).astype(np.uint8))
|
||||
return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in a new issue