Pretrained model in the README
Former-commit-id: 67bf11b4db4c5f2891bd7e8e7f58bcde8ee2d2db
This commit is contained in:
parent
c3c2675369
commit
d43eaa1115
|
@ -81,6 +81,14 @@ By default, the `scale` is 0.5, so if you wish to obtain better results (but use
|
||||||
|
|
||||||
The input images and target masks should be in the `data/imgs` and `data/masks` folders respectively.
|
The input images and target masks should be in the `data/imgs` and `data/masks` folders respectively.
|
||||||
|
|
||||||
|
### Pretrained model
|
||||||
|
A [pretrained model](https://github.com/milesial/Pytorch-UNet/releases/tag/v1.0) is available for the Carvana dataset. It can also be loaded from torch.hub:
|
||||||
|
|
||||||
|
```python
|
||||||
|
net = torch.hub.load('milesial/Pytorch-UNet', 'unet_carvana')
|
||||||
|
```
|
||||||
|
The training was done with a 100% scale and bilinear upsampling.
|
||||||
|
|
||||||
## Tensorboard
|
## Tensorboard
|
||||||
You can visualize in real time the train and test losses, the weights and gradients, along with the model predictions with tensorboard:
|
You can visualize in real time the train and test losses, the weights and gradients, along with the model predictions with tensorboard:
|
||||||
|
|
||||||
|
|
2
train.py
2
train.py
|
@ -130,7 +130,7 @@ def get_args():
|
||||||
help='Number of epochs', dest='epochs')
|
help='Number of epochs', dest='epochs')
|
||||||
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
|
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
|
||||||
help='Batch size', dest='batchsize')
|
help='Batch size', dest='batchsize')
|
||||||
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.1,
|
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.0001,
|
||||||
help='Learning rate', dest='lr')
|
help='Learning rate', dest='lr')
|
||||||
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
|
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
|
||||||
help='Load model from a .pth file')
|
help='Load model from a .pth file')
|
||||||
|
|
Loading…
Reference in a new issue