diff --git a/src/prerender.ipynb b/src/prerender.ipynb new file mode 100644 index 0000000..15df3fc --- /dev/null +++ b/src/prerender.ipynb @@ -0,0 +1,105 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n", + "/home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: /home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZNK3c1010TensorImpl36is_contiguous_nondefault_policy_implENS_12MemoryFormatE\n", + " warn(f\"Failed to load image Python extension: {e}\")\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "\n", + "import numpy as np\n", + "import albumentations as A\n", + "\n", + "from utils import RandomPaste\n", + "from data.dataset import SyntheticDataset\n", + "\n", + "from pathlib import Path\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "transform = A.Compose(\n", + " [\n", + " A.Resize(512, 512),\n", + " A.Flip(),\n", + " A.ColorJitter(),\n", + " RandomPaste(5, \"/home/lilian/data_disk/lfainsin/spheres/\"),\n", + " A.GaussianBlur(),\n", + " A.ISONoise(),\n", + " ],\n", + ")\n", + "\n", + "dataset = SyntheticDataset(image_dir=\"/home/lilian/data_disk/lfainsin/train/\", transform=transform)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10001\r" + ] + } + ], + "source": [ + "for i, (image, mask) in enumerate(dataset):\n", + " path = f\"/home/lilian/data_disk/lfainsin/prerender/{i}/\"\n", + " Path(path).mkdir(parents=True, exist_ok=True)\n", + " Image.fromarray(image).save(f\"{path}/image.jpg\")\n", + " Image.fromarray(mask*255).save(f\"{path}/MASK.PNG\")\n", + " \n", + " print(i, end=\"\\r\")\n", + "\n", + " if i > 10000:\n", + " break" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.0 ('.venv': poetry)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "dc80d2c03865715c8671359a6bf138f6c8ae4e26ae025f2543e0980b8db0ed7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}