Added simple eval and test CRF

This commit is contained in:
milesial 2017-08-19 10:59:51 +02:00
parent 4063565295
commit fa40396fff
6 changed files with 200 additions and 75 deletions

28
crf.py Normal file
View file

@ -0,0 +1,28 @@
import numpy as np
import pydensecrf.densecrf as dcrf
def dense_crf(img, output_probs):
h = output_probs.shape[0]
w = output_probs.shape[1]
output_probs = np.expand_dims(output_probs, 0)
output_probs = np.append(1 - output_probs, output_probs, axis=0)
print(output_probs.shape)
d = dcrf.DenseCRF2D(w, h, 2)
U = -np.log(output_probs)
U = U.reshape((2, -1))
U = np.ascontiguousarray(U)
img = np.ascontiguousarray(img)
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=10, compat=3)
d.addPairwiseBilateral(sxy=50, srgb=20, rgbim=img, compat=10)
Q = d.inference(30)
Q = np.argmax(np.array(Q), axis=0).reshape((h, w))
return Q

56
eval.py Normal file
View file

@ -0,0 +1,56 @@
import torch
from myloss import dice_coeff
import numpy as np
from torch.autograd import Variable
from data_vis import plot_img_mask
import matplotlib.pyplot as plt
import torch.nn.functional as F
from crf import dense_crf
def eval_net(net, dataset, gpu=False):
tot = 0
for i, b in enumerate(dataset):
X = b[0]
y = b[1]
X = torch.FloatTensor(X).unsqueeze(0)
y = torch.ByteTensor(y).unsqueeze(0)
if gpu:
X = Variable(X, volatile=True).cuda()
y = Variable(y, volatile=True).cuda()
else:
X = Variable(X, volatile=True)
y = Variable(y, volatile=True)
y_pred = net(X)
y_pred = (F.sigmoid(y_pred) > 0.6).float()
# y_pred = F.sigmoid(y_pred).float()
dice = dice_coeff(y_pred, y.float()).data[0]
tot += dice
if 0:
X = X.data.squeeze(0).cpu().numpy()
X = np.transpose(X, axes=[1, 2, 0])
y = y.data.squeeze(0).cpu().numpy()
y_pred = y_pred.data.squeeze(0).squeeze(0).cpu().numpy()
print(y_pred.shape)
fig = plt.figure()
ax1 = fig.add_subplot(1, 4, 1)
ax1.imshow(X)
ax2 = fig.add_subplot(1, 4, 2)
ax2.imshow(y)
ax3 = fig.add_subplot(1, 4, 3)
ax3.imshow((y_pred > 0.6))
Q = dense_crf(((X*255).round()).astype(np.uint8), y_pred)
ax4 = fig.add_subplot(1, 4, 4)
print(Q)
ax4.imshow(Q)
plt.show()
return tot / i

105
main.py
View file

@ -8,17 +8,20 @@ from torch import optim
#data manipulation
import numpy as np
import pandas as pd
import cv2
import PIL
#load files
import os
#data vis
#data visualization
from data_vis import plot_img_mask
from utils import *
import matplotlib.pyplot as plt
#quit after interrupt
import sys
dir = 'data'
ids = []
@ -33,69 +36,71 @@ np.random.shuffle(ids)
net = UNet(3, 1)
net.cuda()
optimizer = optim.Adam(net.parameters(), lr=0.001)
criterion = DiceLoss()
def train(net):
optimizer = optim.Adam(net.parameters(), lr=1)
criterion = DiceLoss()
dataset = []
epochs = 5
for epoch in range(epochs):
print('epoch {}/{}...'.format(epoch+1, epochs))
l = 0
epochs = 5
for epoch in range(epochs):
print('epoch {}/{}...'.format(epoch+1, epochs))
l = 0
for i, c in enumerate(ids):
id = c[0]
pos = c[1]
im = PIL.Image.open(dir + '/train/' + id + '.jpg')
im = resize_and_crop(im)
for i, c in enumerate(ids):
id = c[0]
pos = c[1]
im = PIL.Image.open(dir + '/train/' + id + '.jpg')
im = resize_and_crop(im)
ma = PIL.Image.open(dir + '/train_masks/' + id + '_mask.gif')
ma = resize_and_crop(ma)
ma = PIL.Image.open(dir + '/train_masks/' + id + '_mask.gif')
ma = resize_and_crop(ma)
left, right = split_into_squares(np.array(im))
left_m, right_m = split_into_squares(np.array(ma))
left, right = split_into_squares(np.array(im))
left_m, right_m = split_into_squares(np.array(ma))
if pos == 0:
X = left
y = left_m
else:
X = right
y = right_m
if pos == 0:
X = left
y = left_m
else:
X = right
y = right_m
X = np.transpose(X, axes=[2, 0, 1])
X = torch.FloatTensor(X / 255).unsqueeze(0)
y = Variable(torch.ByteTensor(y))
X = np.transpose(X, axes=[2, 0, 1])
X = torch.FloatTensor(X / 255).unsqueeze(0).cuda()
y = Variable(torch.ByteTensor(y)).cuda()
X = Variable(X, requires_grad=False)
X = Variable(X).cuda()
optimizer.zero_grad()
optimizer.zero_grad()
y_pred = net(X).squeeze(1)
y_pred = net(X).squeeze(1)
loss = criterion(y_pred, y.unsqueeze(0).float())
loss = criterion(y_pred, y.unsqueeze(0).float())
l += loss.data[0]
loss.backward()
optimizer.step()
l += loss.data[0]
loss.backward()
if i%10 == 0:
optimizer.step()
print('Stepped')
print('{0:.4f}%.'.format(i/len(ids)*100, end=''))
print('{0:.4f}%\t\t{1:.6f}'.format(i/len(ids)*100, loss.data[0]))
print('Loss : {}'.format(l))
l = l / len(ids)
print('Loss : {}'.format(l))
torch.save(net.state_dict(), 'MODEL_EPOCH{}_LOSS{}.pth'.format(epoch+1, l))
print('Saved')
try:
net.load_state_dict(torch.load('MODEL_INTERRUPTED.pth'))
train(net)
#%%
#net = UNet(3, 2)
#x = Variable(torch.FloatTensor(np.random.randn(1, 3, 640, 640)))
#y = net(x)
#plt.imshow(y[0])
#plt.show()
except KeyboardInterrupt:
print('Interrupted')
torch.save(net.state_dict(), 'MODEL_INTERRUPTED.pth')
try:
sys.exit(0)
except SystemExit:
os._exit(0)

View file

@ -1,13 +1,19 @@
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.nn as nn
from load import *
from data_vis import *
from utils import split_train_val, batch
from myloss import DiceLoss
from eval import eval_net
from unet_model import UNet
from torch.autograd import Variable
from torch import optim
from optparse import OptionParser
import sys
import os
def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
@ -39,14 +45,21 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask)
val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask)
optimizer = optim.Adam(net.parameters(), lr=lr)
criterion = DiceLoss()
optimizer = optim.SGD(net.parameters(),
lr=lr, momentum=0.9, weight_decay=0.0005)
criterion = nn.BCELoss()
for epoch in range(epochs):
print('Starting epoch {}/{}.'.format(epoch+1, epochs))
train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask)
val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask)
epoch_loss = 0
if 1:
val_dice = eval_net(net, val, gpu)
print('Validation Dice Coeff: {}'.format(val_dice))
for i, b in enumerate(batch(train, batch_size)):
X = np.array([i[0] for i in b])
y = np.array([i[1] for i in b])
@ -61,17 +74,22 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
X = Variable(X)
y = Variable(y)
optimizer.zero_grad()
y_pred = net(X)
probs = F.sigmoid(y_pred)
probs_flat = probs.view(-1)
loss = criterion(y_pred, y.float())
y_flat = y.view(-1)
loss = criterion(probs_flat, y_flat.float())
epoch_loss += loss.data[0]
print('{0:.4f} --- loss: {1:.6f}'.format(i*batch_size/N_train,
loss.data[0]))
loss.data[0]))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch finished ! Loss: {}'.format(epoch_loss/i))
@ -83,23 +101,38 @@ def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
print('Checkpoint {} saved !'.format(epoch+1))
parser = OptionParser()
parser.add_option("-e", "--epochs", dest="epochs", default=5, type="int",
help="number of epochs")
parser.add_option("-b", "--batch-size", dest="batchsize", default=10,
type="int", help="batch size")
parser.add_option("-l", "--learning-rate", dest="lr", default=0.1,
type="int", help="learning rate")
parser.add_option("-g", "--gpu", action="store_true", dest="gpu",
default=False, help="use cuda")
parser.add_option("-n", "--ngpu", action="store_false", dest="gpu",
default=False, help="use cuda")
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=5, type='int',
help='number of epochs')
parser.add_option('-b', '--batch-size', dest='batchsize', default=10,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-g', '--gpu', action='store_true', dest='gpu',
default=False, help='use cuda')
parser.add_option('-c', '--load', dest='load',
default=False, help='load file model')
(options, args) = parser.parse_args()
(options, args) = parser.parse_args()
net = UNet(3, 1)
net = UNet(3, 1)
if options.gpu:
net.cuda()
if options.load:
net.load_state_dict(torch.load(options.load))
print('Model loaded from {}'.format(options.load))
train_net(net, options.epochs, options.batchsize, options.lr, gpu=options.gpu)
if options.gpu:
net.cuda()
cudnn.benchmark = True
try:
train_net(net, options.epochs, options.batchsize, options.lr,
gpu=options.gpu)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
print('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)

View file

@ -10,9 +10,11 @@ class double_conv(nn.Module):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.ReLU()
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):

View file

@ -13,7 +13,7 @@ def get_square(img, pos):
return img[:, -h:]
def resize_and_crop(pilimg, scale=0.2, final_height=None):
def resize_and_crop(pilimg, scale=0.5, final_height=None):
w = pilimg.size[0]
h = pilimg.size[1]
newW = int(w * scale)
@ -46,6 +46,7 @@ def split_train_val(dataset, val_percent=0.05):
dataset = list(dataset)
length = len(dataset)
n = int(length * val_percent)
random.seed(42)
random.shuffle(dataset)
return {'train': dataset[:-n], 'val': dataset[-n:]}