--- theme: academic class: text-white coverBackgroundUrl: https://plus.unsplash.com/premium_photo-1673553304257-018c85e606f8?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8 coverBackgroundSource: unplash coverBackgroundSourceUrl: https://unsplash.com/photos/g4I556WCJT0 coverDate: "" themeConfig: paginationX: r paginationY: t paginationPagesDisabled: - 1 title: Projet Long ---

Sphere detection and multimedia applications

2023-03-09 Laurent Fainsin, Pierre-Eliot Jourdan, Raphaëlle Monville-Letu, Jade Neav --- # Contents
- Types of spheres - Automatic sphere detection - Lighting intensity estimation - Lighting direction estimation
Architecture
Cinema
3D Reconstruction
pexels --- class: text-white custombg --- # Types of spheres --- class: text-white custombg2 --- ## Chrome sphere CaveAcademy --- ## Acquisition techniques
Louis du Mont --- ## Realistic lighting
High Dynamic Range Imaging, Paul Debevec --- class: text-white custombg3 --- ## Shiny sphere CaveAcademy --- class: text-white custombg4 --- ## Matte sphere CaveAcademy --- # Automatic sphere detection
- Model - Datasets - Results - Perspectives
--- ## Model
End-to-End Object Detection with Transformers, arXiv:2005.12872 --- ## Datasets (1/4)
Antoine Laurent --- ## Datasets (2/4)
A Dataset of Multi-Illumination Images in the Wild --- ## Datasets (3/4)
MS COCO compositing --- ## Datasets (4/4)
Blender, PolyHaven --- ## Results (1/8)
--- ## Results (2/8)
--- ## Results (3/8)
--- ## Results (4/8)
--- ## Results (5/8)
--- ## Results (6/8)
--- ## Results (7/8)
--- ## Results (8/8)
--- ## Perspectives
Poliigon.com --- # Lighting intensity estimation
- Photometric Stereo - Lambert Law - Problem formulation - Algorithms - Generated images - Results - Perspectives
--- ## Photometric Stereo
- Estimate the surface normals of an object - Shiny spheres $\rightarrow$ direction of the lighting Wikipedia --- ## Lambert law
$I(q) = \rho(Q) \times \vec{n}(Q) \cdot \vec{s}(Q)$ - $\rho(Q)$ is the albedo - $\vec{n}(Q)$ is the normal vector - $\vec{s}(Q) = \phi \times \vec{s_0}(Q)$ is the lighting direction
LaserFocusWorld --- ## Problem formulation
$N$ lightings, $P$ pixels \ $\rightarrow I = M \times S \times D_{\phi}$ - $I \in \mathbb{R}^{P \times N} \rightarrow$ gray scale levels $\rightarrow$ known from image pixels - $M \in \mathbb{R}^{P \times 3} \rightarrow$ the albedo and the normals $\rightarrow$ **unknown** - $S \in \mathbb{R}^{3 \times N} \rightarrow$ direction of lightings $\rightarrow$ known from shiny spheres - $D_{phi} = diag(\phi_1,...,\phi_{N}) \in \mathbb{R}^{ N \times N} \rightarrow$ intensities of lightings $\rightarrow$ **to be determined**
--- ## Algorithm 1
Intensities : $[\phi_1,...,\phi_{N}]$ New values : $\phi_j \plusmn \delta, \ j \in [1,..,N]$ Estimation of the matrix $M$ Mean-squared error : $\underset{\phi_i}{\min} || I - M S D_{\phi} ||_2^2$ Update the value of $\phi_j$ Repeat previous steps
--- ## Algorithm 2
Algorithm 1 $\rightarrow$ too long $$I = M S D_{\phi} \iff M = I(S D_{\phi})^\dagger = I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1}$$ Lambert law : $$ \begin{align*} I &= I (S D_{\phi})^T [(S D_{\phi})(S D_{\phi})^T]^{-1} S D_{\phi} \\ &= I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi} \end{align*} $$ New residual : $$\underset{\phi_i}{\min} || I - I D_{\phi} S^T S^{-T} D_{\phi}^{-2} S^{-1} S D_{\phi} ||_2^2$$
--- ## Generated images
--- ## Results (1/2)
--- ## Results (2/2)
--- ## Real images
--- ## Results
--- ## Perspectives 3D reconstruction --- # Lighting direction estimation
- Estimation of lighting vector - Neural Network - Real data - Generated data - Results - Perspectives
--- ## Estimation of lighting vector
```mermaid flowchart LR id1[Bounding box of the sphere] id2[Deduce the normals] id3[Resolution of I = s * n] id1 --> id2 id2 --> id3 ```
--- ## Neural Network
--- ## ResNet-50 --- ## Real data : creation of mask --- ## Generated data with blender
Simulated matte spheres
Generated data with different lightings
--- ## Results --- ## Perspectives
- Create more data to prevent overfitting - Diversify the types of data lighting (more than 8 directions) - Transform the model into something more general: \ $\rightarrow$ from {image of sphere, vector lighting} to {image of objects, vector lighting}