Find a file
milesial d081192e90 Merge pull request #109 from ant-Korn/save_to_onnx
Corrected class Up for model to ONNX exporting

Former-commit-id: 060bdcd69886a3082a6f8fb7746e12d5fca3e360
2019-12-29 20:02:03 +01:00
data Global cleanup, better logging and CLI 2019-10-26 23:17:48 +02:00
unet Corrected class Up for model to ONNX exporting 2019-12-29 18:49:12 +03:00
utils Removed dense_crf (for real) 2019-12-27 18:30:23 +01:00
.gitignore Removed dense_crf (for real) 2019-12-27 18:30:23 +01:00
dice_loss.py Global cleanup, better logging and CLI 2019-10-26 23:17:48 +02:00
eval.py Update mask type for muticlass 2019-12-13 17:36:12 +01:00
LICENSE Create LICENSE 2017-11-30 08:23:15 +01:00
predict.py Removed dense_crf and small fixes 2019-12-21 22:04:23 +01:00
README.md Update README.md 2019-11-23 18:09:00 +01:00
requirements.txt Removed dense_crf (for real) 2019-12-27 18:30:23 +01:00
submit.py Cleanup + now using tensorboard 2019-11-23 17:56:14 +01:00
train.py Removed dense_crf and small fixes 2019-12-21 22:04:23 +01:00

UNet: semantic segmentation with PyTorch

input and output for a random image in the test dataset

Customized implementation of the U-Net in PyTorch for Kaggle's Carvana Image Masking Challenge from high definition images.

This model was trained from scratch with 5000 images (no data augmentation) and scored a dice coefficient of 0.988423 (511 out of 735) on over 100k test images. This score could be improved with more training, data augmentation, fine tuning, playing with CRF post-processing, and applying more weights on the edges of the masks.

The Carvana data is available on the Kaggle website.

Usage

Note : Use Python 3

Prediction

You can easily test the output masks on your images via the CLI.

To predict a single image and save it:

python predict.py -i image.jpg -o output.jpg

To predict a multiple images and show them without saving them:

python predict.py -i image1.jpg image2.jpg --viz --no-save

> python predict.py -h
usage: predict.py [-h] [--model FILE] --input INPUT [INPUT ...]
                  [--output INPUT [INPUT ...]] [--viz] [--no-save]
                  [--mask-threshold MASK_THRESHOLD] [--scale SCALE]

Predict masks from input images

optional arguments:
  -h, --help            show this help message and exit
  --model FILE, -m FILE
                        Specify the file in which the model is stored
                        (default: MODEL.pth)
  --input INPUT [INPUT ...], -i INPUT [INPUT ...]
                        filenames of input images (default: None)
  --output INPUT [INPUT ...], -o INPUT [INPUT ...]
                        Filenames of ouput images (default: None)
  --viz, -v             Visualize the images as they are processed (default:
                        False)
  --no-save, -n         Do not save the output masks (default: False)
  --mask-threshold MASK_THRESHOLD, -t MASK_THRESHOLD
                        Minimum probability value to consider a mask pixel
                        white (default: 0.5)
  --scale SCALE, -s SCALE
                        Scale factor for the input images (default: 0.5)

You can specify which model file to use with --model MODEL.pth.

Training

> python train.py -h
usage: train.py [-h] [-e E] [-b [B]] [-l [LR]] [-f LOAD] [-s SCALE] [-v VAL]

Train the UNet on images and target masks

optional arguments:
  -h, --help            show this help message and exit
  -e E, --epochs E      Number of epochs (default: 5)
  -b [B], --batch-size [B]
                        Batch size (default: 1)
  -l [LR], --learning-rate [LR]
                        Learning rate (default: 0.1)
  -f LOAD, --load LOAD  Load model from a .pth file (default: False)
  -s SCALE, --scale SCALE
                        Downscaling factor of the images (default: 0.5)
  -v VAL, --validation VAL
                        Percent of the data that is used as validation (0-100)
                        (default: 15.0)

By default, the scale is 0.5, so if you wish to obtain better results (but use more memory), set it to 1.

The input images and target masks should be in the data/imgs and data/masks folders respectively.

Tensorboard

You can visualize in real time the train and test losses, along with the model predictions with tensorboard:

tensorboard --logdir=runs

Notes on memory

The model has be trained from scratch on a GTX970M 3GB. Predicting images of 1918*1280 takes 1.5GB of memory. Training takes much approximately 3GB, so if you are a few MB shy of memory, consider turning off all graphical displays. This assumes you use bilinear up-sampling, and not transposed convolution in the model.


Original paper by Olaf Ronneberger, Philipp Fischer, Thomas Brox: https://arxiv.org/abs/1505.04597

network architecture