115 lines
4.4 KiB
Python
115 lines
4.4 KiB
Python
|
# https://blender.stackexchange.com/questions/38009/3x4-camera-matrix-from-blender-camera
|
||
|
|
||
|
import bpy
|
||
|
from mathutils import Matrix
|
||
|
from mathutils import Vector
|
||
|
|
||
|
#---------------------------------------------------------------
|
||
|
# 3x4 P matrix from Blender camera
|
||
|
#---------------------------------------------------------------
|
||
|
|
||
|
# Build intrinsic camera parameters from Blender camera data
|
||
|
#
|
||
|
# See notes on this in
|
||
|
# blender.stackexchange.com/questions/15102/what-is-blenders-camera-projection-matrix-model
|
||
|
def get_calibration_matrix_K_from_blender(camd):
|
||
|
f_in_mm = camd.lens
|
||
|
scene = bpy.context.scene
|
||
|
resolution_x_in_px = scene.render.resolution_x
|
||
|
resolution_y_in_px = scene.render.resolution_y
|
||
|
scale = scene.render.resolution_percentage / 100
|
||
|
sensor_width_in_mm = camd.sensor_width
|
||
|
sensor_height_in_mm = camd.sensor_height
|
||
|
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
|
||
|
if (camd.sensor_fit == 'VERTICAL'):
|
||
|
# the sensor height is fixed (sensor fit is horizontal),
|
||
|
# the sensor width is effectively changed with the pixel aspect ratio
|
||
|
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
|
||
|
s_v = resolution_y_in_px * scale / sensor_height_in_mm
|
||
|
else: # 'HORIZONTAL' and 'AUTO'
|
||
|
# the sensor width is fixed (sensor fit is horizontal),
|
||
|
# the sensor height is effectively changed with the pixel aspect ratio
|
||
|
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
|
||
|
s_u = resolution_x_in_px * scale / sensor_width_in_mm
|
||
|
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
|
||
|
|
||
|
|
||
|
# Parameters of intrinsic calibration matrix K
|
||
|
alpha_u = f_in_mm * s_u
|
||
|
alpha_v = f_in_mm * s_v
|
||
|
u_0 = resolution_x_in_px * scale / 2
|
||
|
v_0 = resolution_y_in_px * scale / 2
|
||
|
skew = 0 # only use rectangular pixels
|
||
|
|
||
|
K = Matrix(
|
||
|
((alpha_u, skew, u_0),
|
||
|
( 0 , alpha_v, v_0),
|
||
|
( 0 , 0, 1 )))
|
||
|
return K
|
||
|
|
||
|
# Returns camera rotation and translation matrices from Blender.
|
||
|
#
|
||
|
# There are 3 coordinate systems involved:
|
||
|
# 1. The World coordinates: "world"
|
||
|
# - right-handed
|
||
|
# 2. The Blender camera coordinates: "bcam"
|
||
|
# - x is horizontal
|
||
|
# - y is up
|
||
|
# - right-handed: negative z look-at direction
|
||
|
# 3. The desired computer vision camera coordinates: "cv"
|
||
|
# - x is horizontal
|
||
|
# - y is down (to align to the actual pixel coordinates
|
||
|
# used in digital images)
|
||
|
# - right-handed: positive z look-at direction
|
||
|
def get_3x4_RT_matrix_from_blender(cam):
|
||
|
# bcam stands for blender camera
|
||
|
R_bcam2cv = Matrix(
|
||
|
((1, 0, 0),
|
||
|
(0, -1, 0),
|
||
|
(0, 0, -1)))
|
||
|
|
||
|
# Transpose since the rotation is object rotation,
|
||
|
# and we want coordinate rotation
|
||
|
# R_world2bcam = cam.rotation_euler.to_matrix().transposed()
|
||
|
# T_world2bcam = -1*R_world2bcam * location
|
||
|
#
|
||
|
# Use matrix_world instead to account for all constraints
|
||
|
location, rotation = cam.matrix_world.decompose()[0:2]
|
||
|
R_world2bcam = rotation.to_matrix().transposed()
|
||
|
|
||
|
# Convert camera location to translation vector used in coordinate changes
|
||
|
# T_world2bcam = -1*R_world2bcam*cam.location
|
||
|
# Use location from matrix_world to account for constraints:
|
||
|
T_world2bcam = -1*R_world2bcam @ location
|
||
|
|
||
|
# Build the coordinate transform matrix from world to computer vision camera
|
||
|
# NOTE: Use * instead of @ here for older versions of Blender
|
||
|
# TODO: detect Blender version
|
||
|
R_world2cv = R_bcam2cv@R_world2bcam
|
||
|
T_world2cv = R_bcam2cv@T_world2bcam
|
||
|
|
||
|
# put into 3x4 matrix
|
||
|
RT = Matrix((
|
||
|
R_world2cv[0][:] + (T_world2cv[0],),
|
||
|
R_world2cv[1][:] + (T_world2cv[1],),
|
||
|
R_world2cv[2][:] + (T_world2cv[2],)
|
||
|
))
|
||
|
return RT
|
||
|
|
||
|
def get_3x4_P_matrix_from_blender(cam):
|
||
|
K = get_calibration_matrix_K_from_blender(cam.data)
|
||
|
RT = get_3x4_RT_matrix_from_blender(cam)
|
||
|
return K@RT, K, RT
|
||
|
|
||
|
|
||
|
|
||
|
def run_script(scene):
|
||
|
# projection_matrix = scene.camera.matrix_world
|
||
|
projection_matrix, _, _ = get_3x4_P_matrix_from_blender(scene.camera)
|
||
|
with open('/home/damien/Documents/3A/projet-be/imgs/torus/matrices.txt', 'a') as f:
|
||
|
f.write(projection_matrix.__repr__() + '\n\n')
|
||
|
|
||
|
f = open('/home/damien/Documents/3A/projet-be/imgs/torus/matrices.txt', 'w')
|
||
|
f.close()
|
||
|
bpy.app.handlers.frame_change_post.append(run_script)
|