feat: draft fvt and ilv
This commit is contained in:
parent
322d336ce8
commit
06dcf8fb4f
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
data
|
141
fvi.py
Normal file
141
fvi.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def fast_voxel_intersect(start, end, origin, step) -> tuple[list, list]:
|
||||
"""Compute the voxels intersected by a line segment.
|
||||
|
||||
Args:
|
||||
start (array-like): start point of line segment
|
||||
end (array-like): end point of line segment
|
||||
origin (array-like): origin of voxel grid
|
||||
step (array-like): step size of voxel grid
|
||||
|
||||
Returns:
|
||||
list: list of intersection points
|
||||
list: list of intersected voxels
|
||||
"""
|
||||
|
||||
# Convert to numpy arrays
|
||||
start = np.asarray(start)
|
||||
end = np.asarray(end)
|
||||
origin = np.asarray(origin)
|
||||
step = np.asarray(step)
|
||||
|
||||
# Translate line segment to voxel grid
|
||||
start = start - origin
|
||||
end = end - origin
|
||||
|
||||
# Initialize list of intersected voxels
|
||||
intersections = []
|
||||
voxels = []
|
||||
|
||||
# Compute direction of line segment
|
||||
direction = end - start
|
||||
global_distance = np.linalg.norm(direction, axis=0)
|
||||
if global_distance == 0:
|
||||
return intersections
|
||||
direction = direction / global_distance
|
||||
|
||||
# Compute the sign of the direction
|
||||
direction_signs = np.sign(direction)
|
||||
is_positive = direction_signs > 0
|
||||
is_negative = direction_signs < 0
|
||||
|
||||
# Initialize current position to start
|
||||
position = start.copy()
|
||||
|
||||
# Main loop
|
||||
while True:
|
||||
# Compute the distance to the next boundaries
|
||||
next_boundaries = np.divide(position + step * direction_signs, step)
|
||||
distances = (is_positive * np.floor(next_boundaries) +
|
||||
is_negative * np.ceil(next_boundaries)) * step - position
|
||||
|
||||
# Determine the nearest boundary to be reached
|
||||
boundary_distances = np.abs(distances / direction)
|
||||
clothest_boundary = np.argmin(boundary_distances)
|
||||
clothest_boundary_distance = boundary_distances[clothest_boundary]
|
||||
|
||||
# Check if we are done
|
||||
distance_to_end = abs((end[0] - position[0]) / direction[0])
|
||||
if clothest_boundary_distance > distance_to_end:
|
||||
break
|
||||
|
||||
# Update position
|
||||
position = position + clothest_boundary_distance * direction
|
||||
|
||||
# Correct position to be on boundary
|
||||
position[clothest_boundary] = round(
|
||||
position[clothest_boundary] / step[clothest_boundary]) * step[clothest_boundary]
|
||||
|
||||
# Get corresponding voxel
|
||||
boundary_reached_negativly = np.zeros(start.shape, dtype=bool)
|
||||
boundary_reached_negativly[clothest_boundary] = is_negative[clothest_boundary]
|
||||
voxel = np.floor(position) - boundary_reached_negativly * step
|
||||
|
||||
# Add voxel to list
|
||||
intersections.append(position + origin)
|
||||
voxels.append(voxel + origin)
|
||||
|
||||
return intersections, voxels
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def update_figure():
|
||||
positions, voxels = fast_voxel_intersect(start, end, origin, step)
|
||||
|
||||
plt.clf()
|
||||
|
||||
# Plot hitted voxels
|
||||
for voxel in voxels:
|
||||
plt.fill([voxel[0], voxel[0] + step[0], voxel[0] + step[0], voxel[0]],
|
||||
[voxel[1], voxel[1], voxel[1] + step[1], voxel[1] + step[1]],
|
||||
color='#e25', alpha=0.5)
|
||||
|
||||
# Plot line segment
|
||||
plt.plot([start[0], end[0]], [start[1], end[1]], 'k-')
|
||||
plt.plot(start[0], start[1], 'go')
|
||||
plt.plot(end[0], end[1], 'ro')
|
||||
|
||||
# Plot intersection points
|
||||
for pos in positions:
|
||||
plt.plot(pos[0], pos[1], 'bo')
|
||||
|
||||
# Plot voxel grid
|
||||
plt.axis('equal')
|
||||
plt.xlim((-10, 10))
|
||||
plt.ylim((-10, 10))
|
||||
xmin, xmax = plt.xlim()
|
||||
ymin, ymax = plt.ylim()
|
||||
plt.xticks(np.arange(xmin + origin[0],
|
||||
xmax + origin[0] + step[0], step[0]))
|
||||
plt.yticks(np.arange(ymin + origin[1],
|
||||
ymax + origin[1] + step[1], step[1]))
|
||||
plt.grid()
|
||||
plt.draw()
|
||||
|
||||
def onclick(event):
|
||||
global start, end
|
||||
# if event.button == 1:
|
||||
# start = np.array([event.xdata, event.ydata])
|
||||
# elif event.button == 3:
|
||||
# end = np.array([event.xdata, event.ydata])
|
||||
start = np.random.rand(2) * 10 - 5
|
||||
end = np.random.rand(2) * 10 - 5
|
||||
update_figure()
|
||||
|
||||
# Define voxel grid
|
||||
origin = np.array([.1, -.3])
|
||||
step = np.array([1.0, 1.0])
|
||||
|
||||
# Define segment
|
||||
start = np.random.rand(2) * 10 - 5
|
||||
end = np.random.rand(2) * 10 - 5
|
||||
|
||||
# Plot
|
||||
fig = plt.figure()
|
||||
fig.canvas.mpl_connect('button_press_event', onclick)
|
||||
update_figure()
|
||||
plt.show()
|
102
intersec_line_voxel.py
Normal file
102
intersec_line_voxel.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from itertools import product
|
||||
|
||||
|
||||
def check_line_voxel(
|
||||
px, py, pz,
|
||||
dx, dy, dz,
|
||||
vx, vy, vz,
|
||||
c
|
||||
):
|
||||
"""Check if a line intersects a voxel."""
|
||||
|
||||
# Compute the intersection bounds
|
||||
kx1 = (px - dx) / vx
|
||||
ky1 = (py - dy) / vy
|
||||
kz1 = (pz - dz) / vz
|
||||
kx2 = (px - dx + c) / vx
|
||||
ky2 = (py - dy + c) / vy
|
||||
kz2 = (pz - dz + c) / vz
|
||||
|
||||
# Order the bounds
|
||||
kxmin = np.min(np.concatenate([
|
||||
kx1[:, np.newaxis],
|
||||
kx2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kymin = np.min(np.concatenate([
|
||||
ky1[:, np.newaxis],
|
||||
ky2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kzmin = np.min(np.concatenate([
|
||||
kz1[:, np.newaxis],
|
||||
kz2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kxmax = np.max(np.concatenate([
|
||||
kx1[:, np.newaxis],
|
||||
kx2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kymax = np.max(np.concatenate([
|
||||
ky1[:, np.newaxis],
|
||||
ky2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kzmax = np.max(np.concatenate([
|
||||
kz1[:, np.newaxis],
|
||||
kz2[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
|
||||
# Check if the bounds overlap
|
||||
kmax = np.min(np.concatenate([
|
||||
kxmax[:, np.newaxis],
|
||||
kymax[:, np.newaxis],
|
||||
kzmax[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
kmin = np.max(np.concatenate([
|
||||
kxmin[:, np.newaxis],
|
||||
kymin[:, np.newaxis],
|
||||
kzmin[:, np.newaxis]
|
||||
], axis=1), axis=1)
|
||||
return kmin <= kmax
|
||||
|
||||
c = 1.0
|
||||
points = np.array([[x, y, z] for x, y, z in product(
|
||||
np.arange(-5.0, 4.0, c),
|
||||
np.arange(-5.0, 4.0, c),
|
||||
np.arange(-5.0, 4.0, c))
|
||||
])
|
||||
while True:
|
||||
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
d = np.random.rand(3) * 1 - 0.5
|
||||
v = np.random.rand(3) * 1 - 0.5
|
||||
|
||||
px, py, pz = points[:, 0], points[:, 1], points[:, 2]
|
||||
dx, dy, dz = d
|
||||
vx, vy, vz = v
|
||||
|
||||
bool_vect = check_line_voxel(px, py, pz, dx, dy, dz, vx, vy, vz, c)
|
||||
|
||||
# plot cube
|
||||
for i, (px, py, pz) in enumerate(points):
|
||||
if not bool_vect[i]:
|
||||
continue
|
||||
|
||||
ax.plot([px, px+c], [py, py], [pz, pz], 'b')
|
||||
ax.plot([px, px+c], [py, py], [pz+c, pz+c], 'b')
|
||||
ax.plot([px, px+c], [py+c, py+c], [pz, pz], 'b')
|
||||
ax.plot([px, px+c], [py+c, py+c], [pz+c, pz+c], 'b')
|
||||
ax.plot([px, px], [py, py+c], [pz, pz], 'b')
|
||||
ax.plot([px, px], [py, py+c], [pz+c, pz+c], 'b')
|
||||
ax.plot([px+c, px+c], [py, py+c], [pz, pz], 'b')
|
||||
ax.plot([px+c, px+c], [py, py+c], [pz+c, pz+c], 'b')
|
||||
ax.plot([px, px], [py, py], [pz, pz+c], 'b')
|
||||
ax.plot([px, px], [py+c, py+c], [pz, pz+c], 'b')
|
||||
ax.plot([px+c, px+c], [py, py], [pz, pz+c], 'b')
|
||||
ax.plot([px+c, px+c], [py+c, py+c], [pz, pz+c], 'b')
|
||||
|
||||
# plot line
|
||||
ax.plot([dx, dx+vx], [dy, dy+vy], [dz, dz+vz], 'g')
|
||||
|
||||
plt.show()
|
55
main.py
55
main.py
|
@ -1,30 +1,57 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
from itertools import product
|
||||
from rich.progress import track
|
||||
|
||||
from matrices_reader import *
|
||||
|
||||
VOXEL_SIZE = 1e-3
|
||||
VOXEL_SIZE = 2e-2
|
||||
X_MIN, X_MAX = -2.0, 2.0
|
||||
Y_MIN, Y_MAX = -2.0, 2.0
|
||||
Z_MIN, Z_MAX = -2.0, 2.0
|
||||
|
||||
# grid = [[[
|
||||
# 1 for z in np.arange(Z_MIN, Z_MAX, VOXEL_SIZE)
|
||||
# ] for y in np.arange(Y_MIN, Y_MAX, VOXEL_SIZE)
|
||||
# ] for x in np.arange(X_MIN, X_MAX, VOXEL_SIZE)
|
||||
# ]
|
||||
|
||||
projection_matrices = matrices_reader('data/torus/matrices.txt')
|
||||
nb_frame = len(projection_matrices)
|
||||
point = np.array([1.0, 0.0, 0.0, 1.0])
|
||||
|
||||
points = np.array([[x, y, z, 1.0] for x, y, z in product(
|
||||
np.arange(X_MIN, X_MAX, VOXEL_SIZE),
|
||||
np.arange(Y_MIN, Y_MAX, VOXEL_SIZE),
|
||||
np.arange(Z_MIN, Z_MAX, VOXEL_SIZE))])
|
||||
|
||||
background = np.array([18, 18, 18])
|
||||
|
||||
for k in range(nb_frame):
|
||||
|
||||
proj_mat = projection_matrices[k]
|
||||
cam_point = proj_mat @ point
|
||||
cam_point /= cam_point[2]
|
||||
|
||||
frame = cv2.imread(f'data/torus/torus{k+1:04}.png')
|
||||
cv2.circle(frame, (int(cam_point[0]), int(cam_point[1])), 2, (0, 0, 255))
|
||||
proj_mat = projection_matrices[k]
|
||||
|
||||
cam_points = proj_mat @ points.T
|
||||
cam_points /= cam_points[2,:]
|
||||
cam_points = np.round(cam_points, 0).astype(np.int32)
|
||||
|
||||
visible = np.logical_and.reduce((0 <= cam_points[0,:], cam_points[0,:] < frame.shape[1], 0 <= cam_points[1,:], cam_points[1,:] < frame.shape[0]))
|
||||
cam_points = cam_points[:,visible]
|
||||
points = points[visible,:]
|
||||
|
||||
solid = np.invert(((frame[cam_points[1,:],cam_points[0,:]] == background)).all(1))
|
||||
cam_points = cam_points[:,solid]
|
||||
points = points[solid,:]
|
||||
|
||||
for k in range(nb_frame):
|
||||
frame = cv2.imread(f'data/torus/torus{k+1:04}.png')
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
# frame = 255 * (frame == 18).astype(np.uint8)
|
||||
# frame = cv2.filter2D(frame, -1, np.ones((5, 5)) / 25)
|
||||
# frame = 255 * (frame > 255/2).astype(np.uint8)
|
||||
|
||||
proj_mat = projection_matrices[k]
|
||||
|
||||
cam_points = proj_mat @ points.T
|
||||
cam_points /= cam_points[2,:]
|
||||
cam_points = np.round(cam_points, 0).astype(np.int32)
|
||||
|
||||
for cam_point in cam_points.T:
|
||||
cv2.circle(frame, (cam_point[0], cam_point[1]), 2, (255, 0, 0))
|
||||
|
||||
|
||||
cv2.imshow('Frame', frame)
|
||||
cv2.waitKey(0)
|
BIN
torus.blend
BIN
torus.blend
Binary file not shown.
Loading…
Reference in a new issue