Merge branch 'bordel_laurent' of git.inpt.fr:tocard-inc/enseeiht/projet-be into bordel_laurent

This commit is contained in:
Laureηt 2023-01-26 10:08:43 +01:00
commit 0bc66b1d3f
Signed by: Laurent
SSH key fingerprint: SHA256:kZEpW8cMJ54PDeCvOhzreNr4FSh6R13CMGH/POoO8DI
3 changed files with 79 additions and 48 deletions

View file

@ -1,7 +1,7 @@
import numpy as np import numpy as np
def fast_voxel_intersect(start, end, origin, step, shape) -> tuple[list, list, list]: def fast_voxel_intersect(start_, end_, origin_, step_, shape_) -> tuple[list, list, list]:
"""Compute the voxels intersected by a line segment. """Compute the voxels intersected by a line segment.
Args: Args:
@ -17,14 +17,14 @@ def fast_voxel_intersect(start, end, origin, step, shape) -> tuple[list, list, l
""" """
# Convert to numpy arrays # Convert to numpy arrays
start = np.asarray(start) start_ = np.asarray(start_)
end = np.asarray(end) end_ = np.asarray(end_)
origin = np.asarray(origin) origin_ = np.asarray(origin_)
step = np.asarray(step) step_ = np.asarray(step_)
# Translate line segment to voxel grid # Translate line segment to voxel grid
start = start - origin start = (start_ - origin_) / step_
end = end - origin end = (end_ - origin_) / step_
# Initialize list of intersected voxels # Initialize list of intersected voxels
intersections = [] intersections = []
@ -45,17 +45,18 @@ def fast_voxel_intersect(start, end, origin, step, shape) -> tuple[list, list, l
# Initialize current position to start # Initialize current position to start
position = start.copy() position = start.copy()
# print("position: ", position)
# Initialize early exit
is_in = False
# Main loop # Main loop
while True: while True:
# Compute the distance to the next boundaries # Compute the distance to the next boundaries
next_boundaries = np.divide(position + step * direction_signs, step) next_boundaries = position + direction_signs
errored = np.abs(np.round(next_boundaries) - next_boundaries) < 1e-12 errored = np.abs(np.round(next_boundaries) - next_boundaries) < 1e-12
next_boundaries[errored] = np.round(next_boundaries[errored]) next_boundaries[errored] = np.round(next_boundaries[errored])
distances = ( distances = ((1 - is_negative) * np.floor(next_boundaries) +
(1 - is_negative) * np.floor(next_boundaries) + is_negative * np.ceil(next_boundaries) is_negative * np.ceil(next_boundaries)) - position
) * step - position
# Determine the nearest boundary to be reached # Determine the nearest boundary to be reached
boundary_distances = np.abs(distances / direction) boundary_distances = np.abs(distances / direction)
@ -69,29 +70,24 @@ def fast_voxel_intersect(start, end, origin, step, shape) -> tuple[list, list, l
# Update position # Update position
position = position + clothest_boundary_distance * direction position = position + clothest_boundary_distance * direction
# print("position_update: ", position)
# Correct position to be on boundary # Correct position to be on boundary
position[clothest_boundary] = ( position[clothest_boundary] = round(position[clothest_boundary])
round(position[clothest_boundary] / step[clothest_boundary]) * step[clothest_boundary]
)
# Get corresponding voxel # Get corresponding voxel
on_boundary = np.mod(position, step) == 0 on_boundary = np.mod(position, np.ones_like(position)) == 0
voxel = np.floor_divide(position, step) * step - is_negative * on_boundary * step voxel = np.floor(position) - is_negative * on_boundary
# Add voxel to list # Add voxel to list
idx = np.floor_divide(voxel, step).astype(int) idx = np.floor(voxel).astype(int)
if np.any(idx < 0) or np.any(idx >= shape): if np.any(idx < 0) or np.any(idx >= shape_):
if is_in:
break
continue continue
# print(f"voxel: {voxel}, step: {step}, idx: {idx}") intersections.append(position * step_ + origin_)
intersections.append(position + origin) voxels.append(voxel * step_ + origin_)
voxels.append(voxel + origin)
voxels_idx.append(idx) voxels_idx.append(idx)
is_in = True
# print(f"intersections: {intersections}")
# print(f"voxels: {voxels}")
# print(f"voxels_idx: {voxels_idx}")
return intersections, voxels, voxels_idx return intersections, voxels, voxels_idx
@ -132,13 +128,15 @@ if __name__ == "__main__":
) )
# Plot line segment # Plot line segment
plt.plot([start[0], end[0]], [start[1], end[1]], "k-") plt.plot([start[0], end[0]], [start[1], end[1]], 'k-')
plt.plot(start[0], start[1], "go")
plt.plot(end[0], end[1], "ro")
# Plot intersection points # Plot intersection points
for pos in positions: for pos in positions:
plt.plot(pos[0], pos[1], "bo") plt.plot(pos[0], pos[1], 'bo')
# Plot start and end points
plt.plot(start[0], start[1], 'go')
plt.plot(end[0], end[1], 'ro')
# Plot voxel grid # Plot voxel grid
plt.axis("equal") plt.axis("equal")
@ -157,8 +155,8 @@ if __name__ == "__main__":
update_figure() update_figure()
# Define voxel grid # Define voxel grid
origin = np.array([-5.0, -5.0]) origin = np.array([-5., -5.])
step = np.array([0.7, 0.7]) step = np.array([1.4, 1.4])
shape = (10, 10) shape = (10, 10)
# Define segment # Define segment

39
src/levelset.py Normal file
View file

@ -0,0 +1,39 @@
import mcubes
import numpy as np
import matplotlib.pyplot as plt
import imageio.v2 as imageio
import perlin_noise
# X, Y, Z = np.mgrid[:100, :100, :100]
# V = np.sqrt((X - 50)**2 + (Y - 50)**2 + (Z - 50)**2)
# for i in range(5, 45):
# vertices, triangles = mcubes.marching_cubes(V, i)
# mcubes.export_obj(vertices, triangles, f"cube_{i}.obj")
noise = perlin_noise.PerlinNoise(octaves=6, seed=1)
X, Y = np.mgrid[:100, :100]
V = [[10 * noise([x/100, y/100]) + np.sqrt((x-50)**2 + (y-50)**2) for y in range(100)] for x in range(100)]
V = np.array(V)
V = (V - V.min()) / (V.max() - V.min())
frame_list = []
for i in np.linspace(0.05, 0.55, 100):
plt.clf()
plt.subplot(1, 2, 1)
plt.imshow(V, cmap="gray")
plt.contour(V, [i], colors="r")
plt.plot([0, 0, 100, 100, 0], [0, 100, 100, 0, 0], "k-")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(V > i, cmap="gray")
plt.plot([0, 0, 100, 100, 0], [0, 100, 100, 0, 0], "k-")
plt.axis('off')
plt.savefig(f"/tmp/frame.png")
frame_list.append(imageio.imread(f"/tmp/frame.png"))
imageio.mimsave('picture.gif', frame_list + frame_list[::-1], fps=60)

View file

@ -12,8 +12,8 @@ from fvi import fast_voxel_intersect
VOXEL_SIZE = 5e-3 VOXEL_SIZE = 5e-3
X_MIN, X_MAX = 0.7, 1.3 X_MIN, X_MAX = 0.7, 1.3
Y_MIN, Y_MAX = -0.1, 0.1 Y_MIN, Y_MAX = -0.05, 0.05
Z_MIN, Z_MAX = -0.1, 0.1 Z_MIN, Z_MAX = -0.05, 0.05
nb_frame = 24 nb_frame = 24
@ -42,7 +42,7 @@ for k in range(nb_frame):
matrices = pickle.load(file) matrices = pickle.load(file)
proj_mat = matrices["P"] proj_mat = matrices["P"]
proj_mats.append(proj_mat) proj_mats.append(proj_mat)
position = matrices["RT"][:, 3] position = -np.linalg.inv(matrices["RT"][:3,:3]) @ matrices["RT"][:3,3]
positions.append(position) positions.append(position)
cam_points = proj_mat @ points.T cam_points = proj_mat @ points.T
@ -85,14 +85,7 @@ for k in range(nb_frame):
# cv2.imshow('Frame', frame) # cv2.imshow('Frame', frame)
# cv2.waitKey(0) # cv2.waitKey(0)
voxel = np.zeros((int((X_MAX-X_MIN)/VOXEL_SIZE), int((Y_MAX-Y_MIN)/VOXEL_SIZE), int((Z_MAX-Z_MIN)/VOXEL_SIZE)))
voxel = np.zeros(
(
int((X_MAX - X_MIN) / VOXEL_SIZE + 1),
int((Y_MAX - Y_MIN) / VOXEL_SIZE + 1),
int((Z_MAX - Z_MIN) / VOXEL_SIZE + 1),
)
)
idx = np.floor_divide(points[:, :3] - np.array([X_MIN, Y_MIN, Z_MIN]), VOXEL_SIZE).astype(int) idx = np.floor_divide(points[:, :3] - np.array([X_MIN, Y_MIN, Z_MIN]), VOXEL_SIZE).astype(int)
voxel[idx[:, 0], idx[:, 1], idx[:, 2]] = 1 voxel[idx[:, 0], idx[:, 1], idx[:, 2]] = 1
@ -128,9 +121,11 @@ for idx in track(np.argwhere(border)):
# si le rayon ne traverse aucun autre voxel entre le centre du voxel (idx) et le centre de la caméra # si le rayon ne traverse aucun autre voxel entre le centre du voxel (idx) et le centre de la caméra
_, _, voxels_intersected = fast_voxel_intersect(start, end, origin, step, shape) _, _, voxels_intersected = fast_voxel_intersect(start, end, origin, step, shape)
print(f"ntm: {voxels_intersected}")
voxels_intersected = np.array(voxels_intersected, dtype=np.int32) voxels_intersected = np.array(voxels_intersected, dtype=np.int32)
visible = voxel[voxels_intersected].sum() == 0 if len(voxels_intersected) == 0:
visible = True
else:
visible = voxel[voxels_intersected[:, 0], voxels_intersected[:, 1], voxels_intersected[:, 2]].sum() == 0
if visible: if visible:
proj = proj_mats[i] @ np.array([start[0], start[1], start[2], 1.0]) proj = proj_mats[i] @ np.array([start[0], start[1], start[2], 1.0])
@ -140,8 +135,7 @@ for idx in track(np.argwhere(border)):
# calcule écartype des valeurs # calcule écartype des valeurs
std = np.std(values) std = np.std(values)
# print(std) print(f"std: {std}, values: {values}, nb_values: {len(values)}")
# print(values)
# changer le levelset en fonction de l'écartype # changer le levelset en fonction de l'écartype
if std < 2: if std < 2: