generate img with cv2 not plt
This commit is contained in:
parent
aac57406a8
commit
78ddd059df
73
src/draw.py
73
src/draw.py
|
@ -3,14 +3,20 @@ import numpy as np
|
|||
import cv2
|
||||
|
||||
|
||||
VOXEL_SIZE = 0.1
|
||||
X_MIN, X_MAX = -5, 5
|
||||
Y_MIN, Y_MAX = -5, 5
|
||||
|
||||
x_vals = np.arange(X_MIN, X_MAX, VOXEL_SIZE)
|
||||
y_vals = np.arange(Y_MIN, Y_MAX, VOXEL_SIZE)
|
||||
|
||||
image_length = 1500
|
||||
|
||||
|
||||
def f(x, y):
|
||||
return np.exp(-((x**2) + y**2) / 3)
|
||||
|
||||
|
||||
x_vals = np.linspace(-5, 5, 100)
|
||||
y_vals = np.linspace(-5, 5, 100)
|
||||
|
||||
|
||||
X, Y = np.meshgrid(x_vals, y_vals)
|
||||
|
||||
Z = f(X - 2, Y) + f(X + 2, Y)
|
||||
|
@ -24,32 +30,36 @@ for i, x in enumerate(x_vals):
|
|||
color = "#003"
|
||||
else:
|
||||
color = "#" + 3 * color
|
||||
plt.fill([x, x + 0.1, x + 0.1, x], [y, y, y + 0.1, y + 0.1], color=color)
|
||||
plt.fill([x, x + 0.1, x + 0.1, x],
|
||||
[y, y, y + 0.1, y + 0.1], color=color)
|
||||
|
||||
nb_cams = 32
|
||||
cam_poses = np.array(
|
||||
[[6 * np.cos(theta), 6 * np.sin(theta)] for theta in np.linspace(0, 2 * np.pi, nb_cams, endpoint=False)]
|
||||
[[6 * np.cos(theta), 6 * np.sin(theta)]
|
||||
for theta in np.linspace(0, 2 * np.pi, nb_cams, endpoint=False)]
|
||||
)
|
||||
cam_rots = np.linspace(np.pi, 3 * np.pi, nb_cams, endpoint=False)
|
||||
cam2world_projs = np.array(
|
||||
[
|
||||
[[np.cos(theta), -np.sin(theta), cam_pose[0]], [np.sin(theta), np.cos(theta), cam_pose[1]], [0, 0, 1]]
|
||||
[[np.cos(theta), -np.sin(theta), cam_pose[0]],
|
||||
[np.sin(theta), np.cos(theta), cam_pose[1]],
|
||||
[0, 0, 1]]
|
||||
for theta, cam_pose in zip(cam_rots, cam_poses)
|
||||
]
|
||||
)
|
||||
|
||||
for i in range(nb_cams):
|
||||
plt.plot(cam_poses[i][0], cam_poses[i][1], "ro")
|
||||
plt.text(cam_poses[i][0], cam_poses[i][1], str(i))
|
||||
x = np.array([[0, 0, 1], [0.5, -0.2, 1], [0.5, 0.2, 1], [0, 0, 1]]).T
|
||||
x = cam2world_projs[i] @ x
|
||||
plt.plot(cam_poses[i][0], cam_poses[i][1], "ro")
|
||||
plt.text(cam_poses[i][0], cam_poses[i][1], str(i))
|
||||
plt.plot(x[0, :], x[1, :], "r-")
|
||||
|
||||
|
||||
plt.xlim(-7, 7)
|
||||
plt.ylim(-7, 7)
|
||||
plt.axis("equal")
|
||||
plt.savefig("data/peanut/peanut.png", dpi=300, bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.savefig("data/peanut/peanut.png", dpi=300,
|
||||
bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.close()
|
||||
|
||||
# draw 1d image of the scene for each camera
|
||||
|
@ -57,16 +67,15 @@ for i in range(nb_cams):
|
|||
|
||||
# sort pixels by distance to camera
|
||||
cam_pose = cam_poses[i]
|
||||
pixels_dist = np.linalg.norm(np.array([X.flatten(), Y.flatten()]).T - cam_pose, axis=1)
|
||||
pixels_dist = np.linalg.norm(
|
||||
np.array([X.flatten(), Y.flatten()]).T - cam_pose, axis=1)
|
||||
pixels_sort = np.argsort(pixels_dist)[::-1]
|
||||
|
||||
x0 = -1
|
||||
x1 = 1
|
||||
|
||||
plt.figure(f"img{i}")
|
||||
plt.fill([x0, x1, x1, x0], [0, 0, 0.2, 0.2], color="#000")
|
||||
plt.figure(f"mask{i}")
|
||||
plt.fill([x0, x1, x1, x0], [0, 0, 0.2, 0.2], color="#000")
|
||||
img = np.zeros((100, image_length, 3), dtype=np.uint8)
|
||||
mask = np.zeros((100, image_length, 3), dtype=np.uint8)
|
||||
|
||||
for j in pixels_sort:
|
||||
x, y = X.flatten()[j], Y.flatten()[j]
|
||||
|
@ -75,28 +84,22 @@ for i in range(nb_cams):
|
|||
continue
|
||||
color = "#" + 3 * color
|
||||
|
||||
px = np.array([[x, y, 1], [x + 0.1, y, 1], [x + 0.1, y + 0.1, 1], [x, y + 0.1, 1]]).T
|
||||
px = np.linalg.inv(cam2world_projs[i]) @ px
|
||||
RT = np.linalg.inv(cam2world_projs[i])[:-1, :]
|
||||
px = np.array([[x, y, 1],
|
||||
[x + 0.1, y, 1],
|
||||
[x + 0.1, y + 0.1, 1],
|
||||
[x, y + 0.1, 1]])
|
||||
px = RT @ px.T
|
||||
px /= px[0, :]
|
||||
px += np.array([[0], [1.0]])
|
||||
px *= 0.5 * np.array([[1], [image_length]])
|
||||
|
||||
x0 = px[1, :].min()
|
||||
x1 = px[1, :].max()
|
||||
|
||||
plt.figure(f"img{i}")
|
||||
plt.fill([x0, x1, x1, x0], [0, 0, 0.2, 0.2], color=color)
|
||||
plt.figure(f"mask{i}")
|
||||
plt.fill([x0, x1, x1, x0], [0, 0, 0.2, 0.2], color="#fff")
|
||||
img[:, int(x0):int(x1), :] = np.array(
|
||||
3 * [int(Z.flatten()[j] * 255)], dtype=np.uint8)
|
||||
mask[:, int(x0):int(x1), :] = np.array([255, 255, 255], dtype=np.uint8)
|
||||
|
||||
plt.figure(f"img{i}")
|
||||
plt.xlim(-1, 1)
|
||||
plt.ylim(0, 0.2)
|
||||
plt.axis("off")
|
||||
plt.savefig(f"data/peanut/images/Image{i:04}.png", dpi=300, bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.close()
|
||||
|
||||
plt.figure(f"mask{i}")
|
||||
plt.xlim(-1, 1)
|
||||
plt.ylim(0, 0.2)
|
||||
plt.axis("off")
|
||||
plt.savefig(f"data/peanut/masks/Image{i:04}.png", dpi=300, bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.close()
|
||||
cv2.imwrite(f"data/peanut/images/Image{i:04}.png", img)
|
||||
cv2.imwrite(f"data/peanut/masks/Image{i:04}.png", mask)
|
||||
|
|
Loading…
Reference in a new issue