projet-probleme-inverse-3D/tmp.py
Laureηt bbeeee6aee
yay enkore plus de slides
Co-authored-by: pejour <pejour@users.noreply.github.com>
2023-01-26 20:05:32 +01:00

1327 lines
35 KiB
Python

import re
import matplotlib.pyplot as plt
h1 = {
"loss": [],
"c_acc": [],
"top1": [],
"top3": [],
"top5": [],
"val_loss": [],
"val_top1": [],
"val_top3": [],
"val_top5": [],
}
h2 = {
"loss": [],
"c_acc": [],
"top1": [],
"top3": [],
"top5": [],
"val_loss": [],
"val_top1": [],
"val_top3": [],
"val_top5": [],
}
h3 = {
"loss": [],
"c_acc": [],
"top1": [],
"top3": [],
"top5": [],
"val_loss": [],
"val_top1": [],
"val_top3": [],
"val_top5": [],
}
d1 = {
"train": {
"top1": [
0.25,
0.3828125,
0.515625,
0.6015625,
0.5625,
0.6875,
0.734375,
0.7734375,
0.6875,
0.8046875,
0.765625,
0.8046875,
0.84375,
0.796875,
0.8203125,
0.84375,
0.8203125,
0.7734375,
0.90625,
0.8046875,
0.8203125,
0.890625,
0.8515625,
0.921875,
0.9296875,
0.875,
0.875,
0.8828125,
0.90625,
0.921875,
0.875,
0.8515625,
0.875,
0.890625,
0.8828125,
0.921875,
0.8984375,
0.921875,
0.8671875,
0.921875,
0.8984375,
0.9140625,
0.8671875,
0.8828125,
0.9296875,
0.84375,
0.9296875,
0.9296875,
0.9140625,
0.921875,
0.921875,
0.9296875,
0.8984375,
0.9375,
0.9453125,
0.8984375,
0.96875,
0.96875,
0.921875,
0.9609375,
0.90625,
0.953125,
0.9453125,
0.90625,
0.9453125,
0.9765625,
0.96875,
0.90625,
0.9453125,
0.9453125,
0.921875,
0.984375,
0.953125,
0.9375,
0.921875,
0.8984375,
0.9765625,
0.921875,
0.9765625,
0.953125,
0.953125,
0.9609375,
0.9609375,
0.9453125,
0.96875,
0.8984375,
0.953125,
0.953125,
0.953125,
0.890625,
0.90625,
0.9609375,
0.9453125,
0.9609375,
0.8828125,
0.9921875,
0.9296875,
0.9609375,
0.9453125,
0.9765625,
],
"top3": [
0.5078125,
0.625,
0.7421875,
0.890625,
0.7578125,
0.859375,
0.8828125,
0.96875,
0.8984375,
0.921875,
0.9140625,
0.9296875,
0.9296875,
0.953125,
0.9140625,
0.953125,
0.9453125,
0.9453125,
0.984375,
0.9296875,
0.953125,
0.953125,
0.984375,
0.96875,
0.9765625,
0.9609375,
0.9765625,
0.96875,
0.984375,
0.9609375,
0.9765625,
0.96875,
0.9296875,
0.96875,
1.0,
0.9765625,
0.984375,
0.984375,
0.9296875,
0.9921875,
0.9765625,
0.96875,
0.9921875,
0.9765625,
0.96875,
0.9609375,
0.9921875,
0.984375,
0.96875,
1.0,
0.9921875,
0.96875,
0.9453125,
0.9921875,
1.0,
0.9765625,
1.0,
1.0,
0.984375,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.96875,
0.9921875,
0.9921875,
1.0,
0.9921875,
0.9921875,
0.9921875,
0.984375,
1.0,
0.9921875,
0.984375,
0.9921875,
0.984375,
1.0,
0.9921875,
1.0,
0.9765625,
0.9921875,
0.9921875,
0.9921875,
0.9765625,
0.9765625,
0.96875,
0.9921875,
1.0,
0.984375,
0.9921875,
0.984375,
0.984375,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.9765625,
1.0,
],
},
"val": {
"top1": [
0.1616666615009308,
0.16944444179534912,
0.1688888818025589,
0.1666666716337204,
0.16388888657093048,
0.17777778208255768,
0.18222221732139587,
0.18222221732139587,
0.17777778208255768,
0.1738888919353485,
0.1711111068725586,
0.19499999284744263,
0.18166667222976685,
0.1827777773141861,
0.17944444715976715,
0.18777777254581451,
0.18444444239139557,
0.18222221732139587,
0.18444444239139557,
0.18888889253139496,
0.19833333790302277,
0.19722221791744232,
0.18888889253139496,
0.19611111283302307,
0.1922222226858139,
0.1899999976158142,
0.19499999284744263,
0.21111111342906952,
0.20222222805023193,
0.19555555284023285,
0.20333333313465118,
0.1944444477558136,
0.18666666746139526,
0.18388888239860535,
0.18722222745418549,
0.19277778267860413,
0.18888889253139496,
0.212777778506279,
0.20666666328907013,
0.20777778327465057,
0.19277778267860413,
0.19277778267860413,
0.19611111283302307,
0.19277778267860413,
0.21166667342185974,
0.20555555820465088,
0.20555555820465088,
0.2105555534362793,
0.20444443821907043,
0.20499999821186066,
0.2061111181974411,
0.21222221851348877,
0.2011111080646515,
0.19499999284744263,
0.2083333283662796,
0.1988888829946518,
0.2038888931274414,
0.20777778327465057,
0.212777778506279,
0.22166666388511658,
0.21666666865348816,
0.22055555880069733,
0.20000000298023224,
0.2177777737379074,
0.2222222238779068,
0.22333332896232605,
0.2222222238779068,
0.22277778387069702,
0.21833333373069763,
0.20722222328186035,
0.21833333373069763,
0.2150000035762787,
0.2133333384990692,
0.21722222864627838,
0.21888889372348785,
0.20999999344348907,
0.2244444489479065,
0.21166667342185974,
0.21166667342185974,
0.2177777737379074,
0.2266666740179062,
0.21166667342185974,
0.22555555403232574,
0.19777777791023254,
0.23111110925674438,
0.20666666328907013,
0.21222221851348877,
0.21555554866790771,
0.20555555820465088,
0.212777778506279,
0.21611110866069794,
0.20777778327465057,
0.212777778506279,
0.21444444358348846,
0.2199999988079071,
0.21944443881511688,
0.2199999988079071,
0.2061111181974411,
0.20999999344348907,
0.2222222238779068,
],
"top3": [
0.38777777552604675,
0.36944442987442017,
0.3861111104488373,
0.3916666805744171,
0.3766666650772095,
0.3977777659893036,
0.38777777552604675,
0.39888888597488403,
0.39888888597488403,
0.40833333134651184,
0.398333340883255,
0.40666666626930237,
0.40611112117767334,
0.41111111640930176,
0.41499999165534973,
0.41333332657814026,
0.426111102104187,
0.4033333361148834,
0.4194444417953491,
0.4194444417953491,
0.43666666746139526,
0.4211111068725586,
0.4072222113609314,
0.4216666519641876,
0.42722222208976746,
0.41777777671813965,
0.4233333468437195,
0.43166667222976685,
0.43833333253860474,
0.4327777922153473,
0.4238888919353485,
0.41499999165534973,
0.4033333361148834,
0.4211111068725586,
0.4161111116409302,
0.41055554151535034,
0.43111109733581543,
0.43444445729255676,
0.4283333420753479,
0.44388890266418457,
0.4216666519641876,
0.42444443702697754,
0.4216666519641876,
0.4161111116409302,
0.43833333253860474,
0.4211111068725586,
0.4238888919353485,
0.4305555522441864,
0.4233333468437195,
0.4327777922153473,
0.4305555522441864,
0.44777777791023254,
0.4211111068725586,
0.43833333253860474,
0.43833333253860474,
0.43833333253860474,
0.43444445729255676,
0.43111109733581543,
0.44611111283302307,
0.44999998807907104,
0.4483333230018616,
0.4427777826786041,
0.4355555474758148,
0.44333332777023315,
0.4399999976158142,
0.44611111283302307,
0.4427777826786041,
0.43888887763023376,
0.4394444525241852,
0.43833333253860474,
0.4449999928474426,
0.45722222328186035,
0.4422222077846527,
0.44555556774139404,
0.4538888931274414,
0.4444444477558136,
0.46222221851348877,
0.4350000023841858,
0.4427777826786041,
0.46888887882232666,
0.4605555534362793,
0.4605555534362793,
0.4627777636051178,
0.4211111068725586,
0.4577777683734894,
0.4588888883590698,
0.45055556297302246,
0.45444443821907043,
0.4516666531562805,
0.44999998807907104,
0.43888887763023376,
0.44555556774139404,
0.4466666579246521,
0.43833333253860474,
0.4444444477558136,
0.4555555582046509,
0.4605555534362793,
0.4633333384990692,
0.43666666746139526,
0.45055556297302246,
],
},
}
d2 = {
"train": {
"top1": [
0.3125,
0.5703125,
0.6875,
0.7890625,
0.8203125,
0.8125,
0.859375,
0.921875,
0.890625,
0.8828125,
0.8828125,
0.8828125,
0.859375,
0.890625,
0.875,
0.8671875,
0.890625,
0.9140625,
0.921875,
0.8671875,
0.9296875,
0.9453125,
0.921875,
0.9453125,
0.9453125,
0.9453125,
0.96875,
0.9296875,
0.9140625,
0.90625,
0.9765625,
0.9296875,
0.8984375,
0.890625,
0.9453125,
0.8984375,
0.953125,
0.9140625,
0.9375,
0.90625,
0.921875,
0.9296875,
0.9375,
0.953125,
0.9296875,
0.9453125,
0.9453125,
0.953125,
0.96875,
0.921875,
0.96875,
0.96875,
0.9921875,
0.9765625,
0.9921875,
0.9609375,
0.9609375,
0.9765625,
0.96875,
0.9609375,
0.9609375,
0.984375,
0.9765625,
0.984375,
0.95703125,
0.97265625,
0.96875,
0.94921875,
0.98046875,
0.97265625,
0.96484375,
0.9765625,
0.98046875,
0.953125,
0.97265625,
0.9453125,
0.97265625,
0.953125,
0.9453125,
0.9609375,
0.94921875,
0.9765625,
0.96875,
0.96875,
0.9453125,
0.9453125,
0.9609375,
0.97265625,
0.94921875,
0.9765625,
0.96875,
0.96875,
0.95703125,
0.97265625,
0.9609375,
0.95703125,
0.9609375,
0.9609375,
0.96875,
0.98046875,
],
"top3": [
0.609375,
0.796875,
0.875,
0.9296875,
0.96875,
0.96875,
0.9609375,
0.9921875,
0.9765625,
0.9765625,
0.9609375,
0.9609375,
0.9921875,
0.9765625,
0.984375,
0.9765625,
0.9765625,
0.984375,
0.984375,
0.96875,
0.984375,
0.984375,
0.9765625,
0.9765625,
1.0,
0.9921875,
1.0,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.9921875,
0.984375,
1.0,
0.9921875,
0.984375,
0.9921875,
0.96875,
0.984375,
0.9921875,
0.984375,
0.9609375,
0.9765625,
1.0,
1.0,
0.9921875,
0.9921875,
1.0,
1.0,
0.984375,
0.9921875,
0.984375,
0.9921875,
1.0,
1.0,
0.9765625,
1.0,
1.0,
0.9921875,
0.984375,
0.984375,
1.0,
0.9921875,
1.0,
0.984375,
1.0,
0.9921875,
1.0,
0.9921875,
0.99609375,
0.98828125,
0.99609375,
0.99609375,
0.9921875,
1.0,
0.9921875,
1.0,
0.99609375,
0.9921875,
0.98046875,
0.984375,
0.9921875,
0.9921875,
0.99609375,
0.984375,
1.0,
0.98828125,
0.99609375,
0.9921875,
0.99609375,
0.9921875,
1.0,
0.9921875,
0.9921875,
0.9921875,
0.99609375,
0.9921875,
0.9921875,
0.99609375,
1.0,
],
},
"val": {
"top1": [
0.14944444596767426,
0.19499999284744263,
0.20944444835186005,
0.20555555820465088,
0.19777777791023254,
0.21555554866790771,
0.21944443881511688,
0.2222222238779068,
0.22055555880069733,
0.2199999988079071,
0.22611111402511597,
0.21166667342185974,
0.20333333313465118,
0.20944444835186005,
0.21833333373069763,
0.2177777737379074,
0.2244444489479065,
0.23000000417232513,
0.21833333373069763,
0.21944443881511688,
0.2199999988079071,
0.22055555880069733,
0.23222222924232483,
0.22499999403953552,
0.2361111044883728,
0.22166666388511658,
0.22555555403232574,
0.22388888895511627,
0.23222222924232483,
0.2294444441795349,
0.2288888841867447,
0.2338888943195343,
0.22555555403232574,
0.24111111462116241,
0.23944444954395294,
0.2199999988079071,
0.21222221851348877,
0.22333332896232605,
0.2294444441795349,
0.23777778446674347,
0.23055554926395416,
0.23666666448116302,
0.23222222924232483,
0.22333332896232605,
0.23222222924232483,
0.2199999988079071,
0.22833333909511566,
0.22055555880069733,
0.23888888955116272,
0.23222222924232483,
0.2405555546283722,
0.24722221493721008,
0.24388888478279114,
0.253888875246048,
0.24388888478279114,
0.24166665971279144,
0.2522222101688385,
0.25,
0.24666666984558105,
0.24666666984558105,
0.24611110985279083,
0.25,
0.2455555498600006,
0.24500000476837158,
0.23722221702337265,
0.23722222447395325,
0.2474999949336052,
0.24638888239860535,
0.24611111730337143,
0.23944444209337234,
0.2361111044883728,
0.24277778714895248,
0.2408333346247673,
0.23944444209337234,
0.23722222447395325,
0.23749999701976776,
0.24694444984197617,
0.23944444209337234,
0.24694444984197617,
0.24472222477197647,
0.2405555471777916,
0.25138889253139496,
0.24472221732139587,
0.24472223222255707,
0.23666666448116302,
0.24444445222616196,
0.24583332985639572,
0.24499999731779099,
0.24500000476837158,
0.24277778714895248,
0.2386111095547676,
0.24111110717058182,
0.2427777722477913,
0.23555555939674377,
0.24166666716337204,
0.2338888943195343,
0.2455555498600006,
0.24833333492279053,
0.24583332985639572,
0.24833333492279053,
],
"top3": [
0.36944442987442017,
0.42444443702697754,
0.4322222173213959,
0.42888888716697693,
0.4372222125530243,
0.44777777791023254,
0.4561111032962799,
0.44388890266418457,
0.4355555474758148,
0.44111111760139465,
0.43888887763023376,
0.449444442987442,
0.4350000023841858,
0.4350000023841858,
0.43888887763023376,
0.4561111032962799,
0.4583333432674408,
0.45222222805023193,
0.4444444477558136,
0.4394444525241852,
0.44555556774139404,
0.4511111080646515,
0.44555556774139404,
0.45277777314186096,
0.4511111080646515,
0.4533333480358124,
0.4699999988079071,
0.4583333432674408,
0.448888897895813,
0.4533333480358124,
0.44555556774139404,
0.45722222328186035,
0.44055554270744324,
0.4588888883590698,
0.4566666781902313,
0.4511111080646515,
0.46222221851348877,
0.44388890266418457,
0.46222221851348877,
0.46166667342185974,
0.46000000834465027,
0.4605555534362793,
0.4561111032962799,
0.4611110985279083,
0.45444443821907043,
0.449444442987442,
0.4650000035762787,
0.46388888359069824,
0.46611112356185913,
0.448888897895813,
0.4677777886390686,
0.4744444489479065,
0.4833333194255829,
0.47999998927116394,
0.476666659116745,
0.476666659116745,
0.4694444537162781,
0.4744444489479065,
0.48055556416511536,
0.48055556416511536,
0.4744444489479065,
0.46666666865348816,
0.4716666638851166,
0.46888887882232666,
0.47361111640930176,
0.46611110866069794,
0.4808333218097687,
0.46694445610046387,
0.4791666716337204,
0.46611110866069794,
0.4672222286462784,
0.46638888120651245,
0.47138889133930206,
0.46222221851348877,
0.46638888120651245,
0.4680555611848831,
0.48472222685813904,
0.46888887882232666,
0.46416665613651276,
0.47111111879348755,
0.4599999934434891,
0.47083333134651184,
0.46833333373069763,
0.46416667103767395,
0.4699999988079071,
0.4769444465637207,
0.4675000011920929,
0.47138889133930206,
0.4669444411993027,
0.46916666626930237,
0.47138889133930206,
0.47111111879348755,
0.4722222089767456,
0.4602777659893036,
0.4719444364309311,
0.464722216129303,
0.474166676402092,
0.4725000113248825,
0.4797222167253494,
0.47333334386348724,
],
},
}
d3 = {
"train": {
"top1": [
0.640625,
0.76953125,
0.83984375,
0.8828125,
0.90625,
0.9609375,
0.9609375,
0.9765625,
0.96875,
0.9609375,
0.9609375,
0.984375,
0.9765625,
0.984375,
1.0,
0.9765625,
0.9921875,
0.984375,
0.96875,
0.9765625,
0.96875,
0.984375,
0.96875,
0.9921875,
0.96875,
0.9609375,
0.96875,
0.96875,
0.9921875,
0.96875,
0.9765625,
0.96875,
0.953125,
0.9921875,
0.9453125,
0.96875,
0.953125,
0.96875,
0.9609375,
0.984375,
0.953125,
0.9609375,
0.9609375,
0.96875,
0.953125,
0.9609375,
0.9765625,
0.9453125,
0.9609375,
0.9609375,
0.9765625,
0.984375,
0.984375,
0.9765625,
0.96875,
0.9921875,
0.9453125,
0.9765625,
0.953125,
0.984375,
0.96875,
0.9765625,
0.984375,
0.9921875,
0.96875,
0.9765625,
0.9765625,
0.953125,
0.984375,
0.9765625,
0.984375,
0.984375,
1.0,
0.96875,
0.984375,
0.984375,
0.96875,
0.9765625,
0.9609375,
0.984375,
0.984375,
0.984375,
1.0,
0.9765625,
0.953125,
0.9765625,
0.9609375,
0.96875,
0.9765625,
0.9765625,
0.984375,
0.9921875,
0.9609375,
0.9921875,
0.96875,
0.9609375,
0.9765625,
1.0,
0.953125,
0.9921875,
],
"top3": [
0.80078125,
0.890625,
0.93359375,
0.96484375,
0.984375,
0.9765625,
1.0,
1.0,
0.9921875,
0.984375,
0.984375,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
0.9921875,
0.9921875,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
0.984375,
1.0,
1.0,
1.0,
0.9921875,
1.0,
0.984375,
1.0,
1.0,
1.0,
0.9921875,
0.984375,
1.0,
1.0,
1.0,
1.0,
0.9921875,
0.9921875,
1.0,
0.9921875,
1.0,
1.0,
1.0,
0.984375,
0.9765625,
0.9921875,
1.0,
1.0,
1.0,
0.9921875,
1.0,
1.0,
0.9921875,
0.9921875,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.9921875,
0.9921875,
0.9921875,
1.0,
1.0,
0.9921875,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.984375,
0.9921875,
1.0,
1.0,
0.9921875,
1.0,
0.9921875,
1.0,
],
},
"val": {
"top1": [
0.19500000029802322,
0.22111110389232635,
0.2266666665673256,
0.22972221672534943,
0.22083333134651184,
0.24166665971279144,
0.2522222101688385,
0.25,
0.24666666984558105,
0.24666666984558105,
0.24611110985279083,
0.25,
0.2455555498600006,
0.24500000476837158,
0.24722221493721008,
0.2516666650772095,
0.24944444000720978,
0.2405555546283722,
0.24888889491558075,
0.2549999952316284,
0.2544444501399994,
0.24500000476837158,
0.24666666984558105,
0.25055554509162903,
0.2516666650772095,
0.24944444000720978,
0.24444444477558136,
0.24944444000720978,
0.2544444501399994,
0.25,
0.2594444453716278,
0.2522222101688385,
0.25611111521720886,
0.24611110985279083,
0.25611111521720886,
0.2566666603088379,
0.25333333015441895,
0.25833332538604736,
0.25777778029441833,
0.25333333015441895,
0.24944444000720978,
0.2477777749300003,
0.24722221493721008,
0.253888875246048,
0.2516666650772095,
0.24944444000720978,
0.24611110985279083,
0.24722221493721008,
0.24944444000720978,
0.2527777850627899,
0.25,
0.2522222101688385,
0.2527777850627899,
0.24388888478279114,
0.24500000476837158,
0.2527777850627899,
0.2522222101688385,
0.2477777749300003,
0.24944444000720978,
0.2522222101688385,
0.2527777850627899,
0.2433333396911621,
0.24833333492279053,
0.2477777749300003,
0.2383333295583725,
0.2516666650772095,
0.2522222101688385,
0.25999999046325684,
0.2544444501399994,
0.25,
0.253888875246048,
0.2588889002799988,
0.25333333015441895,
0.2516666650772095,
0.25777778029441833,
0.24944444000720978,
0.2527777850627899,
0.24833333492279053,
0.2588889002799988,
0.25111111998558044,
0.2522222101688385,
0.25555557012557983,
0.253888875246048,
0.25555557012557983,
0.24611110985279083,
0.25111111998558044,
0.25999999046325684,
0.2611111104488373,
0.26055556535720825,
0.25555557012557983,
0.24666666984558105,
0.2477777749300003,
0.2522222101688385,
0.2544444501399994,
0.25611111521720886,
0.25111111998558044,
0.25833332538604736,
0.25611111521720886,
0.25833332538604736,
0.25611111521720886,
],
"top3": [
0.4186111092567444,
0.449444442987442,
0.4577777683734894,
0.45444443821907043,
0.45694443583488464,
0.476666659116745,
0.4694444537162781,
0.4744444489479065,
0.48055556416511536,
0.48055556416511536,
0.4744444489479065,
0.46666666865348816,
0.4716666638851166,
0.46888887882232666,
0.4744444489479065,
0.47611111402511597,
0.4772222340106964,
0.48055556416511536,
0.47555556893348694,
0.47611111402511597,
0.472777783870697,
0.47777777910232544,
0.47333332896232605,
0.476666659116745,
0.4749999940395355,
0.4722222089767456,
0.4694444537162781,
0.4877777695655823,
0.4772222340106964,
0.4694444537162781,
0.47777777910232544,
0.48444443941116333,
0.4838888943195343,
0.4788888990879059,
0.4833333194255829,
0.4877777695655823,
0.48444443941116333,
0.47999998927116394,
0.49444442987442017,
0.49000000953674316,
0.4816666543483734,
0.4749999940395355,
0.47833332419395447,
0.4716666638851166,
0.4866666793823242,
0.47833332419395447,
0.48222222924232483,
0.4833333194255829,
0.48277777433395386,
0.4972222149372101,
0.4816666543483734,
0.4866666793823242,
0.47777777910232544,
0.47999998927116394,
0.472777783870697,
0.48222222924232483,
0.4866666793823242,
0.476666659116745,
0.4855555593967438,
0.48055556416511536,
0.4833333194255829,
0.476666659116745,
0.48222222924232483,
0.4833333194255829,
0.4794444441795349,
0.4816666543483734,
0.4833333194255829,
0.47555556893348694,
0.48277777433395386,
0.47833332419395447,
0.48500001430511475,
0.4749999940395355,
0.48055556416511536,
0.47055554389953613,
0.47833332419395447,
0.4744444489479065,
0.48444443941116333,
0.4816666543483734,
0.476666659116745,
0.49000000953674316,
0.47833332419395447,
0.4794444441795349,
0.4811111092567444,
0.4749999940395355,
0.47777777910232544,
0.4866666793823242,
0.47777777910232544,
0.48444443941116333,
0.4877777695655823,
0.4811111092567444,
0.48222222924232483,
0.48500001430511475,
0.4816666543483734,
0.4833333194255829,
0.48444443941116333,
0.48944443464279175,
0.49000000953674316,
0.4883333444595337,
0.48944443464279175,
0.48500001430511475,
],
},
}
with open("/home/laurent/Documents/Cours/ENSEEIHT/S9 - IAM/Projet/src/recup_baseline.txt", "r") as file:
for line in file:
matches = re.finditer(r"(val_loss|loss): ([0-9.]+)", line)
for match in matches:
metric_name = match.group(1)
metric_value = float(match.group(2))
h1[metric_name].append(metric_value)
# with open("/home/laurent/Documents/Cours/ENSEEIHT/S9 - IAM/Projet/src/recup_semisup.txt", "r") as file:
# for line in file:
# matches = re.finditer(r"(val_top1|val_top3): ([0-9.]+)", line)
# for match in matches:
# metric_name = match.group(1)
# metric_value = float(match.group(2))
# h2[metric_name].append(metric_value)
# with open("/home/laurent/Documents/Cours/ENSEEIHT/S9 - IAM/Projet/src/recup_finetuning.txt", "r") as file:
# for line in file:
# matches = re.finditer(r"(val_top1|val_top3): ([0-9.]+)", line)
# for match in matches:
# metric_name = match.group(1)
# metric_value = float(match.group(2))
# h3[metric_name].append(metric_value)
# plt.figure(figsize=(15, 10))
# plt.plot(d1["val"]["top1"], label="baseline_val_top1")
# # plt.plot(h1["val_top3"], color="green", label="baseline_top3")
# plt.plot(d2["val"]["top1"], label="semisup_val_top1")
# # plt.plot(h2["val_top3"], color="green", label="semisup_top3")
# plt.plot(d3["val"]["top1"], label="pretrain_val_top1")
# # plt.plot(h3["val_top3"], color="green", label="finetuning_top3")
# plt.xlabel("Epochs")
# plt.ylabel("Accuracy")
# plt.legend()
# plt.grid()
# plt.savefig("comp_accuracy_sgan.png", dpi=300, transparent=True, bbox_inches="tight", pad_inches=0)
plt.figure(figsize=(15, 10))
plt.plot(h1["loss"], color="purple", label="loss")
plt.plot(h1["val_loss"], color="purple", label="val_loss", linestyle="--")
plt.ylabel("Loss")
plt.xlabel("Epochs")
plt.legend()
plt.grid()
plt.savefig("baseline_loss_simclr.png", dpi=300, transparent=True, bbox_inches="tight", pad_inches=0)