projet-probleme-inverse-3D/src/levelset.py

103 lines
4.3 KiB
Python

import imageio.v2 as imageio
import matplotlib.pyplot as plt
import mcubes
import numpy as np
import perlin_noise
from rich.progress import track
def generate_perlin_noise_3d(shape, res):
def f(t):
return 6*t**5 - 15*t**4 + 10*t**3
delta = (res[0] / shape[0], res[1] / shape[1], res[2] / shape[2])
d = (shape[0] // res[0], shape[1] // res[1], shape[2] // res[2])
grid = np.mgrid[0:res[0]:delta[0],0:res[1]:delta[1],0:res[2]:delta[2]]
grid = grid.transpose(1, 2, 3, 0) % 1
# Gradients
theta = 2*np.pi*np.random.rand(res[0]+1, res[1]+1, res[2]+1)
phi = 2*np.pi*np.random.rand(res[0]+1, res[1]+1, res[2]+1)
gradients = np.stack((np.sin(phi)*np.cos(theta), np.sin(phi)*np.sin(theta), np.cos(phi)), axis=3)
gradients[-1] = gradients[0]
g000 = gradients[0:-1,0:-1,0:-1].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g100 = gradients[1: ,0:-1,0:-1].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g010 = gradients[0:-1,1: ,0:-1].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g110 = gradients[1: ,1: ,0:-1].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g001 = gradients[0:-1,0:-1,1: ].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g101 = gradients[1: ,0:-1,1: ].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g011 = gradients[0:-1,1: ,1: ].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g111 = gradients[1: ,1: ,1: ].repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
# Ramps
n000 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1] , grid[:,:,:,2] ), axis=3) * g000, 3)
n100 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1] , grid[:,:,:,2] ), axis=3) * g100, 3)
n010 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1]-1, grid[:,:,:,2] ), axis=3) * g010, 3)
n110 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2] ), axis=3) * g110, 3)
n001 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1] , grid[:,:,:,2]-1), axis=3) * g001, 3)
n101 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1] , grid[:,:,:,2]-1), axis=3) * g101, 3)
n011 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g011, 3)
n111 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g111, 3)
# Interpolation
t = f(grid)
n00 = n000*(1-t[:,:,:,0]) + t[:,:,:,0]*n100
n10 = n010*(1-t[:,:,:,0]) + t[:,:,:,0]*n110
n01 = n001*(1-t[:,:,:,0]) + t[:,:,:,0]*n101
n11 = n011*(1-t[:,:,:,0]) + t[:,:,:,0]*n111
n0 = (1-t[:,:,:,1])*n00 + t[:,:,:,1]*n10
n1 = (1-t[:,:,:,1])*n01 + t[:,:,:,1]*n11
return ((1-t[:,:,:,2])*n0 + t[:,:,:,2]*n1)
V = 10 * generate_perlin_noise_3d((100, 100, 100), (10, 10, 10))
X, Y, Z = np.mgrid[:100, :100, :100]
V += np.sqrt((X-50)**2 + (Y-50)**2 + (Z-50)**2)
V = (V - V.min()) / (V.max() - V.min())
frame_list = []
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for i in np.linspace(0.05, 0.5, 100):
ax.clear()
vertices, triangles = mcubes.marching_cubes(V, i)
ax.plot_trisurf(vertices[:,0], vertices[:,1], vertices[:,2], triangles=triangles)
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_zlim(0, 100)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.savefig(f"/tmp/frame.png", bbox_inches='tight', pad_inches=0, dpi=300, transparent=True)
frame_list.append(imageio.imread(f"/tmp/frame.png"))
imageio.mimsave('picture.gif', frame_list + frame_list[::-1], fps=60)
noise = perlin_noise.PerlinNoise(octaves=6, seed=1)
X, Y = np.mgrid[:100, :100]
V = [[10 * noise([x / 100, y / 100]) + np.sqrt((x - 50) ** 2 + (y - 50) ** 2) for y in range(100)] for x in range(100)]
V = np.array(V)
V = (V - V.min()) / (V.max() - V.min())
frame_list = []
for i in track(np.linspace(0.05, 0.55, 100)):
plt.clf()
plt.subplot(1, 2, 1)
plt.imshow(V, cmap="gray")
plt.contour(V, [i], colors="r")
plt.plot([0, 0, 100, 100, 0], [0, 100, 100, 0, 0], "k-")
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(V > i, cmap="gray")
plt.plot([0, 0, 100, 100, 0], [0, 100, 100, 0, 0], "k-")
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.axis("off")
plt.savefig(f"/tmp/frame.png", dpi=300, bbox_inches="tight", pad_inches=0, transparent=True)
frame_list.append(imageio.imread(f"/tmp/frame.png"))
imageio.mimsave("docs/figs/lvl7.gif", frame_list + frame_list[::-1], fps=60)