49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
import cv2
|
|
import mediapipe as mp
|
|
|
|
mp_drawing = mp.solutions.drawing_utils # type: ignore
|
|
mp_drawing_styles = mp.solutions.drawing_styles # type: ignore
|
|
mp_holistic = mp.solutions.holistic # type: ignore
|
|
|
|
# open webcam
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
|
|
while cap.isOpened():
|
|
# read webcam
|
|
success, image = cap.read()
|
|
if not success:
|
|
print("Ignoring empty camera frame.")
|
|
# If loading a video, use 'break' instead of 'continue'
|
|
continue
|
|
|
|
# to improve performance, optionally mark the image as not writeable to pass by reference
|
|
image.flags.writeable = False
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
results = holistic.process(image)
|
|
|
|
# draw landmark annotation on the image
|
|
image.flags.writeable = True
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
mp_drawing.draw_landmarks(
|
|
image,
|
|
results.face_landmarks,
|
|
mp_holistic.FACEMESH_CONTOURS,
|
|
landmark_drawing_spec=None,
|
|
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_contours_style(),
|
|
)
|
|
mp_drawing.draw_landmarks(
|
|
image,
|
|
results.pose_landmarks,
|
|
mp_holistic.POSE_CONNECTIONS,
|
|
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(),
|
|
)
|
|
|
|
# flip the image horizontally for a selfie-view display.
|
|
cv2.imshow("MediaPipe Holistic", cv2.flip(image, 1))
|
|
if cv2.waitKey(5) & 0xFF == 27:
|
|
break
|
|
|
|
# close webcam
|
|
cap.release()
|