refiners/tests/foundationals/segment_anything/test_sam.py

524 lines
20 KiB
Python
Raw Permalink Normal View History

from math import isclose
from pathlib import Path
from typing import cast
from warnings import warn
import numpy as np
import pytest
import torch
import torch.nn as nn
from PIL import Image
from tests.foundationals.segment_anything.utils import (
FacebookSAM,
FacebookSAMPredictor,
SAMPrompt,
intersection_over_union,
)
from torch import Tensor
import refiners.fluxion.layers as fl
from refiners.fluxion import manual_seed
from refiners.fluxion.model_converter import ModelConverter
2024-01-19 15:37:01 +00:00
from refiners.fluxion.utils import image_to_tensor, load_tensors, no_grad
from refiners.foundationals.segment_anything.image_encoder import FusedSelfAttention, RelativePositionAttention
2024-03-22 21:50:27 +00:00
from refiners.foundationals.segment_anything.mask_decoder import MaskDecoder
2024-03-22 14:22:37 +00:00
from refiners.foundationals.segment_anything.model import ImageEmbedding, SegmentAnythingH
from refiners.foundationals.segment_anything.transformer import TwoWayTransformerLayer
# See predictor_example.ipynb official notebook
PROMPTS: list[SAMPrompt] = [
SAMPrompt(foreground_points=((500, 375),)),
SAMPrompt(background_points=((500, 375),)),
SAMPrompt(foreground_points=((500, 375), (1125, 625))),
SAMPrompt(foreground_points=((500, 375),), background_points=((1125, 625),)),
SAMPrompt(box_points=[[(425, 600), (700, 875)]]),
SAMPrompt(box_points=[[(425, 600), (700, 875)]], background_points=((575, 750),)),
]
@pytest.fixture(params=PROMPTS)
def prompt(request: pytest.FixtureRequest) -> SAMPrompt:
return request.param
@pytest.fixture
def one_prompt() -> SAMPrompt:
# Using the third prompt of the PROMPTS list in order to strictly do the same test as the official notebook in the
# test_predictor_dense_mask test.
return PROMPTS[2]
@pytest.fixture(scope="module")
def facebook_sam_h_weights(test_weights_path: Path) -> Path:
sam_h_weights = test_weights_path / "sam_vit_h_4b8939.pth"
if not sam_h_weights.is_file():
warn(f"could not find weights at {sam_h_weights}, skipping")
pytest.skip(allow_module_level=True)
return sam_h_weights
@pytest.fixture(scope="module")
def facebook_sam_h(facebook_sam_h_weights: Path, test_device: torch.device) -> FacebookSAM:
from segment_anything import build_sam_vit_h # type: ignore
sam_h = cast(FacebookSAM, build_sam_vit_h())
2024-01-19 15:37:01 +00:00
sam_h.load_state_dict(state_dict=load_tensors(facebook_sam_h_weights))
return sam_h.to(device=test_device)
@pytest.fixture(scope="module")
def facebook_sam_h_predictor(facebook_sam_h: FacebookSAM) -> FacebookSAMPredictor:
from segment_anything import SamPredictor # type: ignore
from segment_anything.modeling import Sam # type: ignore
2023-10-25 12:46:54 +00:00
predictor = SamPredictor(cast(Sam, facebook_sam_h)) # type: ignore
return cast(FacebookSAMPredictor, predictor)
@pytest.fixture(scope="module")
def sam_h(sam_h_weights: Path, test_device: torch.device) -> SegmentAnythingH:
sam_h = SegmentAnythingH(device=test_device)
sam_h.load_from_safetensors(tensors_path=sam_h_weights)
return sam_h
2024-03-19 16:08:54 +00:00
@pytest.fixture(scope="module")
def sam_h_single_output(sam_h_weights: Path, test_device: torch.device) -> SegmentAnythingH:
sam_h = SegmentAnythingH(multimask_output=False, device=test_device)
sam_h.load_from_safetensors(tensors_path=sam_h_weights)
return sam_h
@pytest.fixture(scope="module")
def truck(ref_path: Path) -> Image.Image:
return Image.open(ref_path / "truck.jpg").convert("RGB") # type: ignore
@no_grad()
def test_fused_self_attention(facebook_sam_h: FacebookSAM) -> None:
manual_seed(seed=0)
x = torch.randn(25, 14, 14, 1280, device=facebook_sam_h.device)
attention = cast(nn.Module, facebook_sam_h.image_encoder.blocks[0].attn)
refiners_attention = FusedSelfAttention(
embedding_dim=1280, num_heads=16, spatial_size=(14, 14), device=facebook_sam_h.device
)
rpa = refiners_attention.layer("RelativePositionAttention", RelativePositionAttention)
linear_1 = refiners_attention.layer("Linear_1", fl.Linear)
linear_2 = refiners_attention.layer("Linear_2", fl.Linear)
linear_1.weight = attention.qkv.weight
linear_1.bias = attention.qkv.bias
linear_2.weight = attention.proj.weight
linear_2.bias = attention.proj.bias
rpa.horizontal_embedding = attention.rel_pos_w
rpa.vertical_embedding = attention.rel_pos_h
y_1 = attention(x)
assert y_1.shape == x.shape
y_2 = refiners_attention(x)
assert y_2.shape == x.shape
assert torch.equal(input=y_1, other=y_2)
2024-03-22 21:50:27 +00:00
def test_mask_decoder_arg() -> None:
mask_decoder_default = MaskDecoder()
sam_h = SegmentAnythingH(mask_decoder=mask_decoder_default)
assert sam_h.mask_decoder == mask_decoder_default
def test_multimask_output_error() -> None:
mask_decoder_multimask_output = MaskDecoder(multimask_output=True)
with pytest.raises(AssertionError, match="multimask_output"):
SegmentAnythingH(mask_decoder=mask_decoder_multimask_output, multimask_output=False)
@no_grad()
def test_image_encoder(sam_h: SegmentAnythingH, facebook_sam_h: FacebookSAM, truck: Image.Image) -> None:
resized = truck.resize(size=(1024, 1024)) # type: ignore
image_tensor = image_to_tensor(image=resized, device=facebook_sam_h.device)
y_1 = facebook_sam_h.image_encoder(image_tensor)
y_2 = sam_h.image_encoder(image_tensor)
assert torch.allclose(input=y_1, other=y_2, atol=1e-4)
@no_grad()
def test_prompt_encoder_dense_positional_embedding(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
refiners_prompt_encoder = sam_h.point_encoder
facebook_dense_pe: Tensor = cast(Tensor, facebook_prompt_encoder.get_dense_pe()) # type: ignore
refiners_dense_pe = refiners_prompt_encoder.get_dense_positional_embedding(image_embedding_size=(64, 64))
assert torch.equal(input=refiners_dense_pe, other=facebook_dense_pe)
@no_grad()
def test_prompt_encoder_no_mask_dense_embedding(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
refiners_prompt_encoder = sam_h.mask_encoder
_, facebook_dense_pe = facebook_prompt_encoder(points=None, boxes=None, masks=None)
refiners_dense_pe = refiners_prompt_encoder.get_no_mask_dense_embedding(image_embedding_size=(64, 64))
assert torch.equal(input=refiners_dense_pe, other=facebook_dense_pe)
@no_grad()
def test_point_encoder(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH, prompt: SAMPrompt) -> None:
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
refiners_prompt_encoder = sam_h.point_encoder
facebook_sparse_pe, _ = facebook_prompt_encoder(
**prompt.facebook_prompt_encoder_kwargs(device=facebook_sam_h.device)
)
prompt_dict = prompt.__dict__
# Skip mask prompt, if any, since the point encoder only consumes points and boxes
# TODO: split `SAMPrompt` and introduce a dedicated one for dense prompts
prompt_dict.pop("low_res_mask", None)
assert prompt_dict is not None, "`test_point_encoder` cannot be called with just a `low_res_mask`"
coordinates, type_mask = refiners_prompt_encoder.points_to_tensor(**prompt_dict)
# Shift to center of pixel + normalize in [0, 1] (see `_embed_points` in segment-anything official repo)
coordinates[:, :, 0] = (coordinates[:, :, 0] + 0.5) / 1024.0
coordinates[:, :, 1] = (coordinates[:, :, 1] + 0.5) / 1024.0
refiners_prompt_encoder.set_type_mask(type_mask=type_mask)
refiners_sparse_pe = refiners_prompt_encoder(coordinates)
assert torch.equal(input=refiners_sparse_pe, other=facebook_sparse_pe)
@no_grad()
def test_two_way_transformer(facebook_sam_h: FacebookSAM) -> None:
dense_embedding = torch.randn(1, 64 * 64, 256, device=facebook_sam_h.device)
dense_positional_embedding = torch.randn(1, 64 * 64, 256, device=facebook_sam_h.device)
sparse_embedding = torch.randn(1, 3, 256, device=facebook_sam_h.device)
refiners_layer = TwoWayTransformerLayer(
embedding_dim=256, feed_forward_dim=2048, num_heads=8, device=facebook_sam_h.device
)
facebook_layer = facebook_sam_h.mask_decoder.transformer.layers[1] # type: ignore
assert isinstance(facebook_layer, nn.Module)
refiners_layer.set_context(
context="mask_decoder",
value={
"dense_embedding": dense_embedding,
"dense_positional_embedding": dense_positional_embedding,
"sparse_embedding": sparse_embedding,
},
)
facebook_inputs = {
"queries": sparse_embedding,
"keys": dense_embedding,
"query_pe": sparse_embedding,
"key_pe": dense_positional_embedding,
}
converter = ModelConverter(
source_model=facebook_layer,
target_model=refiners_layer,
skip_output_check=True, # done below, manually
)
assert converter.run(source_args=facebook_inputs, target_args=(sparse_embedding,))
refiners_layer.set_context(
context="mask_decoder",
value={
"dense_embedding": dense_embedding,
"dense_positional_embedding": dense_positional_embedding,
"sparse_embedding": sparse_embedding,
},
)
y_1 = facebook_layer(**facebook_inputs)[0]
y_2 = refiners_layer(sparse_embedding)[0]
assert torch.equal(input=y_1, other=y_2)
@no_grad()
def test_mask_decoder(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
manual_seed(seed=0)
facebook_mask_decoder = facebook_sam_h.mask_decoder
refiners_mask_decoder = sam_h.mask_decoder
image_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
dense_positional_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
point_embedding = torch.randn(1, 3, 256, device=facebook_sam_h.device)
mask_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
from segment_anything.modeling.common import LayerNorm2d # type: ignore
assert issubclass(LayerNorm2d, nn.Module)
custom_layers = {LayerNorm2d: fl.LayerNorm2d}
converter = ModelConverter(
source_model=facebook_mask_decoder,
target_model=refiners_mask_decoder,
custom_layer_mapping=custom_layers, # type: ignore
)
inputs = {
"image_embeddings": image_embedding,
"image_pe": dense_positional_embedding,
"sparse_prompt_embeddings": point_embedding,
"dense_prompt_embeddings": mask_embedding,
"multimask_output": True,
}
refiners_mask_decoder.set_image_embedding(image_embedding)
refiners_mask_decoder.set_point_embedding(point_embedding)
refiners_mask_decoder.set_mask_embedding(mask_embedding)
refiners_mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
mapping = converter.map_state_dicts(source_args=inputs, target_args={})
assert mapping is not None
2024-03-21 13:59:36 +00:00
mapping["MaskDecoderTokens.Parameter"] = "iou_token"
state_dict = converter._convert_state_dict( # type: ignore
source_state_dict=facebook_mask_decoder.state_dict(),
target_state_dict=refiners_mask_decoder.state_dict(),
state_dict_mapping=mapping,
)
2024-03-21 13:59:36 +00:00
state_dict["MaskDecoderTokens.Parameter.weight"] = torch.cat(
[facebook_mask_decoder.iou_token.weight, facebook_mask_decoder.mask_tokens.weight], dim=0
) # type: ignore
refiners_mask_decoder.load_state_dict(state_dict=state_dict)
facebook_output = facebook_mask_decoder(**inputs)
refiners_mask_decoder.set_image_embedding(image_embedding)
refiners_mask_decoder.set_point_embedding(point_embedding)
refiners_mask_decoder.set_mask_embedding(mask_embedding)
refiners_mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
mask_prediction, iou_prediction = refiners_mask_decoder()
facebook_masks = facebook_output[0]
facebook_prediction = facebook_output[1]
assert torch.equal(input=mask_prediction, other=facebook_masks)
assert torch.equal(input=iou_prediction, other=facebook_prediction)
def test_predictor(
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, prompt: SAMPrompt
) -> None:
predictor = facebook_sam_h_predictor
predictor.set_image(np.array(truck))
facebook_masks, facebook_scores, _ = predictor.predict(**prompt.facebook_predict_kwargs()) # type: ignore
assert len(facebook_masks) == 3
masks, scores, _ = sam_h.predict(truck, **prompt.__dict__)
masks = masks.squeeze(0)
scores = scores.squeeze(0)
assert len(masks) == 3
for i in range(3):
mask_prediction = masks[i].cpu()
facebook_mask = torch.as_tensor(facebook_masks[i])
assert isclose(intersection_over_union(mask_prediction, facebook_mask), 1.0, rel_tol=5e-05)
assert isclose(scores[i].item(), facebook_scores[i].item(), rel_tol=1e-05)
def test_predictor_image_embedding(sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt) -> None:
masks_ref, scores_ref, _ = sam_h.predict(truck, **one_prompt.__dict__)
image_embedding = sam_h.compute_image_embedding(truck)
masks, scores, _ = sam_h.predict(image_embedding, **one_prompt.__dict__)
assert torch.equal(masks, masks_ref)
assert torch.equal(scores_ref, scores)
def test_predictor_dense_mask(
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt
) -> None:
"""
NOTE : Binarizing intermediate masks isn't necessary, as per SamPredictor.predict_torch docstring:
> mask_input (np.ndarray): A low resolution mask input to the model, typically
> coming from a previous prediction iteration. Has form Bx1xHxW, where
> for SAM, H=W=256. Masks returned by a previous iteration of the
> predict method do not need further transformation.
"""
predictor = facebook_sam_h_predictor
predictor.set_image(np.array(truck))
facebook_masks, facebook_scores, facebook_logits = predictor.predict(
**one_prompt.facebook_predict_kwargs(), # type: ignore
multimask_output=True,
)
assert len(facebook_masks) == 3
facebook_mask_input = facebook_logits[np.argmax(facebook_scores)] # shape: HxW
# Using the same mask coordinates inputs as the official notebook
facebook_prompt = SAMPrompt(
foreground_points=((500, 375),), background_points=((1125, 625),), low_res_mask=facebook_mask_input[None, ...]
)
facebook_dense_masks, _, _ = predictor.predict(**facebook_prompt.facebook_predict_kwargs(), multimask_output=True) # type: ignore
assert len(facebook_dense_masks) == 3
masks, scores, logits = sam_h.predict(truck, **one_prompt.__dict__)
masks = masks.squeeze(0)
scores = scores.squeeze(0)
assert len(masks) == 3
mask_input = logits[:, scores.max(dim=0).indices, ...] # shape: 1xHxW
assert np.allclose(
mask_input.cpu(), facebook_mask_input, atol=1e-1
) # Lower doesn't pass, but it's close enough for logits
refiners_prompt = SAMPrompt(
foreground_points=((500, 375),), background_points=((1125, 625),), low_res_mask=mask_input.unsqueeze(0)
)
dense_masks, _, _ = sam_h.predict(truck, **refiners_prompt.__dict__)
dense_masks = dense_masks.squeeze(0)
assert len(dense_masks) == 3
for i in range(3):
dense_mask_prediction = dense_masks[i].cpu()
facebook_dense_mask = torch.as_tensor(facebook_dense_masks[i])
assert dense_mask_prediction.shape == facebook_dense_mask.shape
assert isclose(intersection_over_union(dense_mask_prediction, facebook_dense_mask), 1.0, rel_tol=5e-05)
2024-03-19 16:08:54 +00:00
def test_predictor_single_output(
facebook_sam_h_predictor: FacebookSAMPredictor,
sam_h_single_output: SegmentAnythingH,
truck: Image.Image,
one_prompt: SAMPrompt,
) -> None:
predictor = facebook_sam_h_predictor
predictor.set_image(np.array(truck))
facebook_masks, facebook_scores, facebook_low_res_masks = predictor.predict( # type: ignore
2024-03-19 16:08:54 +00:00
**one_prompt.facebook_predict_kwargs(), # type: ignore
multimask_output=False,
)
assert len(facebook_masks) == 1
masks, scores, low_res_masks = sam_h_single_output.predict(truck, **one_prompt.__dict__)
2024-03-19 16:08:54 +00:00
masks = masks.squeeze(0)
scores = scores.squeeze(0)
assert len(masks) == 1
assert torch.allclose(
low_res_masks[0, 0, ...],
torch.as_tensor(facebook_low_res_masks[0], device=sam_h_single_output.device),
2024-03-22 14:22:37 +00:00
atol=6e-3, # see test_predictor_resized_single_output for more explanation
)
assert isclose(scores[0].item(), facebook_scores[0].item(), abs_tol=1e-05)
2024-03-19 16:08:54 +00:00
mask_prediction = masks[0].cpu()
facebook_mask = torch.as_tensor(facebook_masks[0])
assert isclose(intersection_over_union(mask_prediction, facebook_mask), 1.0, rel_tol=5e-05)
2024-03-22 14:22:37 +00:00
def test_predictor_resized_single_output(
facebook_sam_h_predictor: FacebookSAMPredictor,
sam_h_single_output: SegmentAnythingH,
truck: Image.Image,
one_prompt: SAMPrompt,
) -> None:
# The refiners implementation of SAM differs from official
# implementation by a 6e-3 absolute diff (see test_predictor_single_output)
# This diff is related to 2 components :
# * image_encoder (see test_image_encoder)
# * point rescaling (facebook uses numpy while refiners uses torch)
#
# Current test is designed to workaround those 2 components
# * facebook image_embedding is used
# * the image is pre-resized by (1024, 1024) so there is no rescaling
# Then the test pass with torch.equal
predictor = facebook_sam_h_predictor
size = (1024, 1024)
resized_truck = truck.resize(size) # type: ignore
2024-03-22 14:22:37 +00:00
predictor.set_image(np.array(resized_truck))
_, _, facebook_low_res_masks = predictor.predict( # type: ignore
**one_prompt.facebook_predict_kwargs(), # type: ignore
multimask_output=False,
)
facebook_image_embedding = ImageEmbedding(features=predictor.features, original_image_size=size)
_, _, low_res_masks = sam_h_single_output.predict(facebook_image_embedding, **one_prompt.__dict__)
assert torch.equal(
low_res_masks[0, 0, ...],
torch.as_tensor(facebook_low_res_masks[0], device=sam_h_single_output.device),
)
def test_mask_encoder(
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt
) -> None:
predictor = facebook_sam_h_predictor
predictor.set_image(np.array(truck))
_, facebook_scores, facebook_logits = predictor.predict(
**one_prompt.facebook_predict_kwargs(), # type: ignore
multimask_output=True,
)
facebook_mask_input = facebook_logits[np.argmax(facebook_scores)]
facebook_mask_input = (
torch.from_numpy(facebook_mask_input) # type: ignore
.to(device=predictor.model.device)
.unsqueeze(0)
.unsqueeze(0) # shape: 1x1xHxW
)
_, fb_dense_embeddings = predictor.model.prompt_encoder(
points=None,
boxes=None,
masks=facebook_mask_input,
)
_, scores, logits = sam_h.predict(truck, **one_prompt.__dict__)
scores = scores.squeeze(0)
mask_input = logits[:, scores.max(dim=0).indices, ...].unsqueeze(0) # shape: 1x1xHxW
dense_embeddings = sam_h.mask_encoder(mask_input)
assert facebook_mask_input.shape == mask_input.shape
assert torch.allclose(dense_embeddings, fb_dense_embeddings, atol=1e-4, rtol=1e-4)
2024-03-21 13:59:36 +00:00
@no_grad()
def test_batch_mask_decoder(sam_h: SegmentAnythingH) -> None:
batch_size = 5
image_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1, 1)
mask_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1, 1)
dense_positional_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(
batch_size, 1, 1, 1
)
point_embedding = torch.randn(1, 2, 256, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1)
sam_h.mask_decoder.set_image_embedding(image_embedding)
sam_h.mask_decoder.set_mask_embedding(mask_embedding)
sam_h.mask_decoder.set_point_embedding(point_embedding)
sam_h.mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
mask_prediction, iou_prediction = sam_h.mask_decoder()
assert mask_prediction.shape == (batch_size, 3, 256, 256)
assert iou_prediction.shape == (batch_size, 3)
assert torch.equal(mask_prediction[0], mask_prediction[1])