refiners/scripts/conversion/convert_diffusers_unet.py

114 lines
3.9 KiB
Python
Raw Permalink Normal View History

import argparse
from pathlib import Path
import torch
from diffusers import UNet2DConditionModel # type: ignore
from torch import nn
from refiners.fluxion.model_converter import ModelConverter
from refiners.foundationals.latent_diffusion import SD1UNet, SDXLUNet
class Args(argparse.Namespace):
source_path: str
output_path: str | None
subfolder: str
half: bool
verbose: bool
skip_init_check: bool
def setup_converter(args: Args) -> ModelConverter:
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = UNet2DConditionModel.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path,
subfolder=args.subfolder,
low_cpu_mem_usage=False,
)
source_in_channels: int = source.config.in_channels # type: ignore
source_clip_embedding_dim: int = source.config.cross_attention_dim # type: ignore
source_has_time_ids: bool = source.config.addition_embed_type == "text_time" # type: ignore
target = (
SDXLUNet(in_channels=source_in_channels) if source_has_time_ids else SD1UNet(in_channels=source_in_channels)
)
x = torch.randn(1, source_in_channels, 32, 32)
timestep = torch.tensor(data=[0])
clip_text_embeddings = torch.randn(1, 77, source_clip_embedding_dim)
target.set_timestep(timestep=timestep)
target.set_clip_text_embedding(clip_text_embedding=clip_text_embeddings)
added_cond_kwargs = {}
if source_has_time_ids:
added_cond_kwargs = {"text_embeds": torch.randn(1, 1280), "time_ids": torch.randn(1, 6)}
target.set_time_ids(time_ids=added_cond_kwargs["time_ids"])
target.set_pooled_text_embedding(pooled_text_embedding=added_cond_kwargs["text_embeds"])
target_args = (x,)
source_args = {
"positional": (x, timestep, clip_text_embeddings),
"keyword": {"added_cond_kwargs": added_cond_kwargs} if source_has_time_ids else {},
}
converter = ModelConverter(
source_model=source,
target_model=target,
skip_init_check=args.skip_init_check,
skip_output_check=True,
verbose=args.verbose,
)
if not converter.run(
source_args=source_args,
target_args=target_args,
):
raise RuntimeError("Model conversion failed")
return converter
def main() -> None:
parser = argparse.ArgumentParser(
description="Converts a Diffusion UNet model to a Refiners SD1UNet or SDXLUNet model"
)
parser.add_argument(
"--from",
type=str,
dest="source_path",
default="runwayml/stable-diffusion-v1-5",
help=(
"Can be a path to a .bin file, a .safetensors file or a model name from the HuggingFace Hub. Default:"
" runwayml/stable-diffusion-v1-5"
),
)
parser.add_argument(
"--to",
type=str,
dest="output_path",
default=None,
help=(
"Output path (.safetensors) for converted model. If not provided, the output path will be the same as the"
" source path."
),
)
parser.add_argument("--subfolder", type=str, default="unet", help="Subfolder. Default: unet.")
parser.add_argument(
"--skip-init-check",
action="store_true",
help="Skip check that source and target have the same layers count.",
)
parser.add_argument("--half", action="store_true", help="Convert to half precision.")
parser.add_argument(
"--verbose",
action="store_true",
default=False,
help="Prints additional information during conversion. Default: False",
)
args = parser.parse_args(namespace=Args())
if args.output_path is None:
args.output_path = f"{Path(args.source_path).stem}-unet.safetensors"
converter = setup_converter(args=args)
converter.save_to_safetensors(path=args.output_path, half=args.half)
if __name__ == "__main__":
main()