refiners/tests/e2e/test_lcm.py

192 lines
6.6 KiB
Python
Raw Normal View History

import gc
from pathlib import Path
from warnings import warn
import pytest
import torch
from PIL import Image
2024-06-24 14:22:11 +00:00
from tests.utils import ensure_similar_images
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
from refiners.foundationals.latent_diffusion.solvers import LCMSolver
2024-02-20 15:22:08 +00:00
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm import SDXLLcmAdapter
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm_lora import add_lcm_lora
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
def _img_open(path: Path) -> Image.Image:
return Image.open(path) # type: ignore
@pytest.fixture(autouse=True)
def ensure_gc():
# Avoid GPU OOMs
# See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812
gc.collect()
@pytest.fixture(scope="module")
def ref_path(test_e2e_path: Path) -> Path:
return test_e2e_path / "test_lcm_ref"
@pytest.fixture
def expected_lcm_base(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_lcm_base.png").convert("RGB")
@pytest.fixture
def expected_lcm_lora_1_0(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_lcm_lora_1_0.png").convert("RGB")
@pytest.fixture
def expected_lcm_lora_1_2(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_lcm_lora_1_2.png").convert("RGB")
@no_grad()
def test_lcm_base(
test_device: torch.device,
2024-10-09 09:28:34 +00:00
sdxl_autoencoder_fp16fix_weights_path: Path,
sdxl_unet_lcm_weights_path: Path,
sdxl_text_encoder_weights_path: Path,
expected_lcm_base: Image.Image,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
sdxl.classifier_free_guidance = False
# With standard LCM the condition scale is passed to the adapter,
# not in the diffusion loop.
2024-02-20 15:22:08 +00:00
SDXLLcmAdapter(sdxl.unet, condition_scale=8.0).inject()
2024-10-09 09:28:34 +00:00
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
sdxl.unet.load_from_safetensors(sdxl_unet_lcm_weights_path)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_base
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
time_ids = sdxl.default_time_ids
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
)
predicted_image = sdxl.lda.latents_to_image(x)
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
@no_grad()
@pytest.mark.parametrize("condition_scale", [1.0, 1.2])
def test_lcm_lora_with_guidance(
test_device: torch.device,
2024-10-09 09:28:34 +00:00
sdxl_autoencoder_fp16fix_weights_path: Path,
sdxl_unet_weights_path: Path,
sdxl_text_encoder_weights_path: Path,
lora_sdxl_lcm_weights_path: Path,
expected_lcm_lora_1_0: Image.Image,
expected_lcm_lora_1_2: Image.Image,
condition_scale: float,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
2024-10-09 09:28:34 +00:00
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
sdxl.unet.load_from_safetensors(sdxl_unet_weights_path)
manager = SDLoraManager(sdxl)
2024-10-09 09:28:34 +00:00
add_lcm_lora(manager, load_from_safetensors(lora_sdxl_lcm_weights_path))
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_lora_1_0 if condition_scale == 1.0 else expected_lcm_lora_1_2
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
time_ids = sdxl.default_time_ids
assert time_ids.shape == (2, 6) # CFG
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
condition_scale=condition_scale,
)
predicted_image = sdxl.lda.latents_to_image(x)
psnr = 35 if condition_scale == 1.0 else 33
ensure_similar_images(predicted_image, expected_image, min_psnr=psnr, min_ssim=0.98)
@no_grad()
def test_lcm_lora_without_guidance(
test_device: torch.device,
2024-10-09 09:28:34 +00:00
sdxl_autoencoder_fp16fix_weights_path: Path,
sdxl_unet_weights_path: Path,
sdxl_text_encoder_weights_path: Path,
lora_sdxl_lcm_weights_path: Path,
expected_lcm_lora_1_0: Image.Image,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
sdxl.classifier_free_guidance = False
2024-10-09 09:28:34 +00:00
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
sdxl.unet.load_from_safetensors(sdxl_unet_weights_path)
manager = SDLoraManager(sdxl)
2024-10-09 09:28:34 +00:00
add_lcm_lora(manager, load_from_safetensors(lora_sdxl_lcm_weights_path))
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_lora_1_0
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
time_ids = sdxl.default_time_ids
assert time_ids.shape == (1, 6) # no CFG
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
condition_scale=0.0,
)
predicted_image = sdxl.lda.latents_to_image(x)
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)