refiners/scripts/prepare_test_weights.py

868 lines
30 KiB
Python
Raw Normal View History

"""
Download and convert weights for testing
To see what weights will be downloaded and converted, run:
DRY_RUN=1 python scripts/prepare_test_weights.py
"""
2024-03-08 09:35:42 +00:00
import hashlib
import os
import subprocess
import sys
from urllib.parse import urlparse
import requests
from tqdm import tqdm
# Set the base directory to the parent directory of the script
project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
test_weights_dir = os.path.join(project_dir, "tests", "weights")
previous_line = "\033[F"
download_count = 0
bytes_count = 0
def die(message: str) -> None:
print(message, file=sys.stderr)
sys.exit(1)
def rel(path: str) -> str:
return os.path.relpath(path, project_dir)
def calc_hash(filepath: str) -> str:
with open(filepath, "rb") as f:
data = f.read()
found = hashlib.blake2b(data, digest_size=int(32 / 8)).hexdigest()
return found
def check_hash(path: str, expected: str) -> str:
found = calc_hash(path)
if found != expected:
die(f"❌ Invalid hash for {path} ({found} != {expected})")
return found
def download_file(
url: str,
dest_folder: str,
dry_run: bool | None = None,
skip_existing: bool = True,
expected_hash: str | None = None,
filename: str | None = None,
):
"""
Downloads a file
Features:
- shows a progress bar
- skips existing files
- uses a temporary file to prevent partial downloads
- can do a dry run to check the url is valid
- displays the downloaded file hash
"""
global download_count, bytes_count
filename = os.path.basename(urlparse(url).path) if filename is None else filename
dest_filename = os.path.join(dest_folder, filename)
temp_filename = dest_filename + ".part"
dry_run = bool(os.environ.get("DRY_RUN") == "1") if dry_run is None else dry_run
is_downloaded = os.path.exists(dest_filename)
if is_downloaded and skip_existing:
skip_icon = "✖️ "
else:
skip_icon = "🔽"
if dry_run:
response = requests.head(url, allow_redirects=True)
readable_size = ""
if response.status_code == 200:
content_length = response.headers.get("content-length")
if content_length:
size_in_bytes = int(content_length)
readable_size = human_readable_size(size_in_bytes)
download_count += 1
bytes_count += size_in_bytes
print(f"{skip_icon} {response.status_code} READY {readable_size:<8} {url}")
else:
print(f"{skip_icon} {response.status_code} ERROR {readable_size:<8} {url}")
return
if skip_existing and is_downloaded:
print(f"{skip_icon} Skipping previously downloaded {url}")
if expected_hash is not None:
check_hash(dest_filename, expected_hash)
return
os.makedirs(dest_folder, exist_ok=True)
print(f"🔽 Downloading {url} => '{rel(dest_filename)}'", end="\n")
response = requests.get(url, stream=True)
if response.status_code != 200:
print(response.content[:1000])
die(f"Failed to download {url}. Status code: {response.status_code}")
total = int(response.headers.get("content-length", 0))
bar = tqdm(
desc=filename,
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
leave=False,
)
with open(temp_filename, "wb") as f, bar:
for data in response.iter_content(chunk_size=1024 * 1000):
size = f.write(data)
bar.update(size)
os.rename(temp_filename, dest_filename)
calculated_hash = calc_hash(dest_filename)
print(f"{previous_line}✅ Downloaded {calculated_hash} {url} => '{rel(dest_filename)}' ")
if expected_hash is not None:
check_hash(dest_filename, expected_hash)
def download_files(urls: list[str], dest_folder: str):
for url in urls:
download_file(url, dest_folder)
def human_readable_size(size: int | float, decimal_places: int = 2) -> str:
for unit in ["B", "KB", "MB", "GB", "TB", "PB"]:
if size < 1024.0:
break
size /= 1024.0
return f"{size:.{decimal_places}f}{unit}" # type: ignore
def download_sd_text_encoder(hf_repo_id: str = "runwayml/stable-diffusion-v1-5", subdir: str = "text_encoder"):
encoder_filename = "model.safetensors" if "inpainting" not in hf_repo_id else "model.fp16.safetensors"
base_url = f"https://huggingface.co/{hf_repo_id}"
download_files(
urls=[
f"{base_url}/raw/main/{subdir}/config.json",
f"{base_url}/resolve/main/{subdir}/{encoder_filename}",
],
dest_folder=os.path.join(test_weights_dir, hf_repo_id, subdir),
)
def download_sd_tokenizer(hf_repo_id: str = "runwayml/stable-diffusion-v1-5", subdir: str = "tokenizer"):
download_files(
urls=[
f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/merges.txt",
f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/special_tokens_map.json",
f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/tokenizer_config.json",
f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/vocab.json",
],
dest_folder=os.path.join(test_weights_dir, hf_repo_id, subdir),
)
def download_sd_base(hf_repo_id: str = "runwayml/stable-diffusion-v1-5"):
is_inpainting = "inpainting" in hf_repo_id
ext = "safetensors" if not is_inpainting else "bin"
base_folder = os.path.join(test_weights_dir, hf_repo_id)
download_file(f"https://huggingface.co/{hf_repo_id}/raw/main/model_index.json", base_folder)
download_file(
f"https://huggingface.co/{hf_repo_id}/raw/main/scheduler/scheduler_config.json",
os.path.join(base_folder, "scheduler"),
)
for subdir in ["unet", "vae"]:
subdir_folder = os.path.join(base_folder, subdir)
download_file(f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/config.json", subdir_folder)
download_file(
f"https://huggingface.co/{hf_repo_id}/resolve/main/{subdir}/diffusion_pytorch_model.{ext}", subdir_folder
)
# we only need the unet for the inpainting model
if not is_inpainting:
download_sd_text_encoder(hf_repo_id, "text_encoder")
download_sd_tokenizer(hf_repo_id, "tokenizer")
def download_sd15(hf_repo_id: str = "runwayml/stable-diffusion-v1-5"):
download_sd_base(hf_repo_id)
base_folder = os.path.join(test_weights_dir, hf_repo_id)
subdir = "feature_extractor"
download_file(
f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/preprocessor_config.json",
os.path.join(base_folder, subdir),
)
if "inpainting" not in hf_repo_id:
subdir = "safety_checker"
subdir_folder = os.path.join(base_folder, subdir)
download_file(f"https://huggingface.co/{hf_repo_id}/raw/main/{subdir}/config.json", subdir_folder)
download_file(f"https://huggingface.co/{hf_repo_id}/resolve/main/{subdir}/model.safetensors", subdir_folder)
def download_sdxl(hf_repo_id: str = "stabilityai/stable-diffusion-xl-base-1.0"):
download_sd_base(hf_repo_id)
download_sd_text_encoder(hf_repo_id, "text_encoder_2")
download_sd_tokenizer(hf_repo_id, "tokenizer_2")
def download_vae_fp16_fix():
download_files(
urls=[
"https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/raw/main/config.json",
"https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/resolve/main/diffusion_pytorch_model.safetensors",
],
dest_folder=os.path.join(test_weights_dir, "madebyollin", "sdxl-vae-fp16-fix"),
)
def download_vae_ft_mse():
download_files(
urls=[
"https://huggingface.co/stabilityai/sd-vae-ft-mse/raw/main/config.json",
"https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/diffusion_pytorch_model.safetensors",
],
dest_folder=os.path.join(test_weights_dir, "stabilityai", "sd-vae-ft-mse"),
)
def download_loras():
dest_folder = os.path.join(test_weights_dir, "loras", "pokemon-lora")
download_file(
"https://huggingface.co/pcuenq/pokemon-lora/resolve/main/pytorch_lora_weights.bin",
dest_folder,
expected_hash="89992ea6",
)
dest_folder = os.path.join(test_weights_dir, "loras", "dpo-lora")
download_file(
"https://huggingface.co/radames/sdxl-DPO-LoRA/resolve/main/pytorch_lora_weights.safetensors",
dest_folder,
expected_hash="a51e9144",
)
2024-01-22 13:45:34 +00:00
dest_folder = os.path.join(test_weights_dir, "loras", "sliders")
download_file("https://sliders.baulab.info/weights/xl_sliders/age.pt", dest_folder, expected_hash="908f07d3")
download_file(
"https://sliders.baulab.info/weights/xl_sliders/cartoon_style.pt", dest_folder, expected_hash="25652004"
)
download_file("https://sliders.baulab.info/weights/xl_sliders/eyesize.pt", dest_folder, expected_hash="ee170e4d")
2024-01-22 13:45:34 +00:00
2024-03-06 09:56:46 +00:00
dest_folder = os.path.join(test_weights_dir, "loras")
download_file(
"https://civitai.com/api/download/models/140624",
filename="Sci-fi_Environments_sdxl.safetensors",
dest_folder=dest_folder,
expected_hash="6a4afda8",
)
download_file(
"https://civitai.com/api/download/models/135931",
filename="pixel-art-xl-v1.1.safetensors",
dest_folder=dest_folder,
expected_hash="71aaa6ca",
)
def download_preprocessors():
dest_folder = os.path.join(test_weights_dir, "carolineec", "informativedrawings")
download_file("https://huggingface.co/spaces/carolineec/informativedrawings/resolve/main/model2.pth", dest_folder)
def download_controlnet():
base_folder = os.path.join(test_weights_dir, "lllyasviel")
controlnets = [
"control_v11p_sd15_canny",
"control_v11f1p_sd15_depth",
"control_v11p_sd15_normalbae",
"control_v11p_sd15_lineart",
]
for net in controlnets:
net_folder = os.path.join(base_folder, net)
urls = [
f"https://huggingface.co/lllyasviel/{net}/raw/main/config.json",
f"https://huggingface.co/lllyasviel/{net}/resolve/main/diffusion_pytorch_model.safetensors",
]
download_files(urls, net_folder)
2024-06-24 09:05:19 +00:00
tile_folder = os.path.join(base_folder, "control_v11f1e_sd15_tile")
urls = [
"https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/raw/main/config.json",
"https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/diffusion_pytorch_model.bin",
]
download_files(urls, tile_folder)
mfidabel_folder = os.path.join(test_weights_dir, "mfidabel", "controlnet-segment-anything")
urls = [
"https://huggingface.co/mfidabel/controlnet-segment-anything/raw/main/config.json",
"https://huggingface.co/mfidabel/controlnet-segment-anything/resolve/main/diffusion_pytorch_model.bin",
]
download_files(urls, mfidabel_folder)
def download_control_lora_fooocus():
base_folder = os.path.join(test_weights_dir, "lllyasviel", "misc")
download_file(
url=f"https://huggingface.co/lllyasviel/misc/resolve/main/control-lora-canny-rank128.safetensors",
dest_folder=base_folder,
expected_hash="fec9e32b",
)
download_file(
url=f"https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_xl_cpds_128.safetensors",
dest_folder=base_folder,
expected_hash="fc04b120",
)
def download_unclip():
base_folder = os.path.join(test_weights_dir, "stabilityai", "stable-diffusion-2-1-unclip")
download_file(
"https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/raw/main/model_index.json", base_folder
)
image_encoder_folder = os.path.join(base_folder, "image_encoder")
urls = [
"https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/raw/main/image_encoder/config.json",
"https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/resolve/main/image_encoder/model.safetensors",
]
download_files(urls, image_encoder_folder)
def download_ip_adapter():
base_folder = os.path.join(test_weights_dir, "h94", "IP-Adapter")
models_folder = os.path.join(base_folder, "models")
urls = [
"https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin",
"https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus_sd15.bin",
]
download_files(urls, models_folder)
sdxl_models_folder = os.path.join(base_folder, "sdxl_models")
urls = [
"https://huggingface.co/h94/IP-Adapter/resolve/main/sdxl_models/ip-adapter_sdxl_vit-h.bin",
"https://huggingface.co/h94/IP-Adapter/resolve/main/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin",
]
download_files(urls, sdxl_models_folder)
def download_t2i_adapter():
base_folder = os.path.join(test_weights_dir, "TencentARC", "t2iadapter_depth_sd15v2")
urls = [
"https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2/raw/main/config.json",
"https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2/resolve/main/diffusion_pytorch_model.bin",
]
download_files(urls, base_folder)
canny_sdxl_folder = os.path.join(test_weights_dir, "TencentARC", "t2i-adapter-canny-sdxl-1.0")
urls = [
"https://huggingface.co/TencentARC/t2i-adapter-canny-sdxl-1.0/raw/main/config.json",
"https://huggingface.co/TencentARC/t2i-adapter-canny-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors",
]
download_files(urls, canny_sdxl_folder)
def download_sam():
weights_folder = os.path.join(test_weights_dir)
download_file(
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", weights_folder, expected_hash="06785e66"
)
2024-03-21 13:59:36 +00:00
def download_hq_sam():
weights_folder = os.path.join(test_weights_dir)
download_file(
"https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth", weights_folder, expected_hash="66da2472"
)
2023-12-17 18:08:17 +00:00
def download_dinov2():
# For conversion
weights_folder = os.path.join(test_weights_dir)
urls = [
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth",
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth",
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth",
2024-04-11 12:14:18 +00:00
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth",
2023-12-17 18:08:17 +00:00
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_reg4_pretrain.pth",
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_reg4_pretrain.pth",
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_reg4_pretrain.pth",
2024-04-11 12:14:18 +00:00
"https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_reg4_pretrain.pth",
2023-12-17 18:08:17 +00:00
]
download_files(urls, weights_folder)
def download_lcm_base():
base_folder = os.path.join(test_weights_dir, "latent-consistency/lcm-sdxl")
download_file(f"https://huggingface.co/latent-consistency/lcm-sdxl/raw/main/config.json", base_folder)
download_file(
f"https://huggingface.co/latent-consistency/lcm-sdxl/resolve/main/diffusion_pytorch_model.safetensors",
base_folder,
)
def download_lcm_lora():
download_file(
"https://huggingface.co/latent-consistency/lcm-lora-sdxl/resolve/main/pytorch_lora_weights.safetensors",
dest_folder=test_weights_dir,
filename="sdxl-lcm-lora.safetensors",
expected_hash="6312a30a",
)
def download_sdxl_lightning_base():
base_folder = os.path.join(test_weights_dir, "ByteDance/SDXL-Lightning")
download_file(
f"https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_4step_unet.safetensors",
base_folder,
expected_hash="1b76cca3",
)
download_file(
f"https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_1step_unet_x0.safetensors",
base_folder,
expected_hash="38e605bd",
)
def download_sdxl_lightning_lora():
download_file(
"https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_4step_lora.safetensors",
dest_folder=test_weights_dir,
expected_hash="9783edac",
)
def download_ic_light():
download_file(
"https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors",
dest_folder=test_weights_dir,
expected_hash="bce70123",
)
def printg(msg: str):
"""print in green color"""
print("\033[92m" + msg + "\033[0m")
def run_conversion_script(
script_filename: str,
from_weights: str,
to_weights: str,
half: bool = False,
expected_hash: str | None = None,
additional_args: list[str] | None = None,
skip_existing: bool = True,
):
if skip_existing and expected_hash and os.path.exists(to_weights):
found_hash = check_hash(to_weights, expected_hash)
if expected_hash == found_hash:
printg(f"✖️ Skipping converted from {from_weights} to {to_weights} (hash {found_hash} confirmed) ")
return
msg = f"Converting {from_weights} to {to_weights}"
printg(msg)
args = ["python", f"scripts/conversion/{script_filename}", "--from", from_weights, "--to", to_weights]
if half:
args.append("--half")
if additional_args:
args.extend(additional_args)
subprocess.run(args, check=True)
if expected_hash is not None:
found_hash = check_hash(to_weights, expected_hash)
printg(f"✅ Converted from {from_weights} to {to_weights} (hash {found_hash} confirmed) ")
else:
printg(f"✅⚠️ Converted from {from_weights} to {to_weights} (no hash check performed)")
def convert_sd15():
run_conversion_script(
script_filename="convert_transformers_clip_text_model.py",
from_weights="tests/weights/runwayml/stable-diffusion-v1-5",
to_weights="tests/weights/CLIPTextEncoderL.safetensors",
half=True,
expected_hash="6c9cbc59",
)
run_conversion_script(
"convert_diffusers_autoencoder_kl.py",
"tests/weights/runwayml/stable-diffusion-v1-5",
"tests/weights/lda.safetensors",
expected_hash="329e369c",
)
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/runwayml/stable-diffusion-v1-5",
"tests/weights/unet.safetensors",
half=True,
expected_hash="f81ac65a",
)
os.makedirs("tests/weights/inpainting", exist_ok=True)
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/runwayml/stable-diffusion-inpainting",
"tests/weights/inpainting/unet.safetensors",
half=True,
expected_hash="c07a8c61",
)
def convert_sdxl():
run_conversion_script(
"convert_transformers_clip_text_model.py",
"tests/weights/stabilityai/stable-diffusion-xl-base-1.0",
"tests/weights/DoubleCLIPTextEncoder.safetensors",
half=True,
expected_hash="7f99c30b",
additional_args=["--subfolder2", "text_encoder_2"],
)
run_conversion_script(
"convert_diffusers_autoencoder_kl.py",
"tests/weights/stabilityai/stable-diffusion-xl-base-1.0",
"tests/weights/sdxl-lda.safetensors",
half=True,
expected_hash="7464e9dc",
)
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/stabilityai/stable-diffusion-xl-base-1.0",
"tests/weights/sdxl-unet.safetensors",
half=True,
expected_hash="2e5c4911",
)
def convert_vae_ft_mse():
run_conversion_script(
"convert_diffusers_autoencoder_kl.py",
"tests/weights/stabilityai/sd-vae-ft-mse",
"tests/weights/lda_ft_mse.safetensors",
half=True,
expected_hash="4d0bae7e",
)
def convert_vae_fp16_fix():
run_conversion_script(
"convert_diffusers_autoencoder_kl.py",
"tests/weights/madebyollin/sdxl-vae-fp16-fix",
"tests/weights/sdxl-lda-fp16-fix.safetensors",
additional_args=["--subfolder", "''"],
half=True,
expected_hash="98c7e998",
)
def convert_preprocessors():
subprocess.run(
[
"curl",
"-L",
"https://raw.githubusercontent.com/carolineec/informative-drawings/main/model.py",
"-o",
"src/model.py",
],
check=True,
)
run_conversion_script(
"convert_informative_drawings.py",
"tests/weights/carolineec/informativedrawings/model2.pth",
"tests/weights/informative-drawings.safetensors",
expected_hash="93dca207",
)
os.remove("src/model.py")
def convert_controlnet():
os.makedirs("tests/weights/controlnet", exist_ok=True)
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/lllyasviel/control_v11p_sd15_canny",
"tests/weights/controlnet/lllyasviel_control_v11p_sd15_canny.safetensors",
expected_hash="9a1a48cf",
)
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/lllyasviel/control_v11f1p_sd15_depth",
"tests/weights/controlnet/lllyasviel_control_v11f1p_sd15_depth.safetensors",
expected_hash="bbe7e5a6",
)
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/lllyasviel/control_v11p_sd15_normalbae",
"tests/weights/controlnet/lllyasviel_control_v11p_sd15_normalbae.safetensors",
expected_hash="9fa88ed5",
)
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/lllyasviel/control_v11p_sd15_lineart",
"tests/weights/controlnet/lllyasviel_control_v11p_sd15_lineart.safetensors",
expected_hash="c29e8c03",
)
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/mfidabel/controlnet-segment-anything",
"tests/weights/controlnet/mfidabel_controlnet-segment-anything.safetensors",
expected_hash="d536eebb",
)
2024-06-24 09:05:19 +00:00
run_conversion_script(
"convert_diffusers_controlnet.py",
"tests/weights/lllyasviel/control_v11f1e_sd15_tile",
"tests/weights/controlnet/lllyasviel_control_v11f1e_sd15_tile.safetensors",
expected_hash="42463af8",
)
def convert_unclip():
run_conversion_script(
"convert_transformers_clip_image_model.py",
"tests/weights/stabilityai/stable-diffusion-2-1-unclip",
"tests/weights/CLIPImageEncoderH.safetensors",
half=True,
expected_hash="4ddb44d2",
)
def convert_ip_adapter():
run_conversion_script(
"convert_diffusers_ip_adapter.py",
"tests/weights/h94/IP-Adapter/models/ip-adapter_sd15.bin",
"tests/weights/ip-adapter_sd15.safetensors",
expected_hash="3fb0472e",
)
run_conversion_script(
"convert_diffusers_ip_adapter.py",
"tests/weights/h94/IP-Adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin",
"tests/weights/ip-adapter_sdxl_vit-h.safetensors",
half=True,
expected_hash="860518fe",
)
run_conversion_script(
"convert_diffusers_ip_adapter.py",
"tests/weights/h94/IP-Adapter/models/ip-adapter-plus_sd15.bin",
"tests/weights/ip-adapter-plus_sd15.safetensors",
half=True,
expected_hash="aba8503b",
)
run_conversion_script(
"convert_diffusers_ip_adapter.py",
"tests/weights/h94/IP-Adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin",
"tests/weights/ip-adapter-plus_sdxl_vit-h.safetensors",
half=True,
expected_hash="545d5ce7",
)
def convert_t2i_adapter():
os.makedirs("tests/weights/T2I-Adapter", exist_ok=True)
run_conversion_script(
"convert_diffusers_t2i_adapter.py",
"tests/weights/TencentARC/t2iadapter_depth_sd15v2",
"tests/weights/T2I-Adapter/t2iadapter_depth_sd15v2.safetensors",
half=True,
expected_hash="bb2b3115",
)
run_conversion_script(
"convert_diffusers_t2i_adapter.py",
"tests/weights/TencentARC/t2i-adapter-canny-sdxl-1.0",
"tests/weights/T2I-Adapter/t2i-adapter-canny-sdxl-1.0.safetensors",
half=True,
expected_hash="f07249a6",
)
def convert_sam():
run_conversion_script(
"convert_segment_anything.py",
"tests/weights/sam_vit_h_4b8939.pth",
"tests/weights/segment-anything-h.safetensors",
2024-03-21 13:59:36 +00:00
expected_hash="5ffb976f",
)
def convert_hq_sam():
run_conversion_script(
"convert_hq_segment_anything.py",
"tests/weights/sam_hq_vit_h.pth",
"tests/weights/refiners-sam-hq-vit-h.safetensors",
expected_hash="b2f5e79f",
)
2023-12-17 18:08:17 +00:00
def convert_dinov2():
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vits14_pretrain.pth",
"tests/weights/dinov2_vits14_pretrain.safetensors",
expected_hash="af000ded",
2023-12-17 18:08:17 +00:00
)
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitb14_pretrain.pth",
"tests/weights/dinov2_vitb14_pretrain.safetensors",
expected_hash="d6294087",
2023-12-17 18:08:17 +00:00
)
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitl14_pretrain.pth",
"tests/weights/dinov2_vitl14_pretrain.safetensors",
expected_hash="ddd4819f",
2023-12-17 18:08:17 +00:00
)
2024-04-11 12:14:18 +00:00
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitg14_pretrain.pth",
"tests/weights/dinov2_vitg14_pretrain.safetensors",
expected_hash="880c61f5",
)
2023-12-17 18:08:17 +00:00
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vits14_reg4_pretrain.pth",
"tests/weights/dinov2_vits14_reg4_pretrain.safetensors",
expected_hash="080247c7",
2023-12-17 18:08:17 +00:00
)
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitb14_reg4_pretrain.pth",
"tests/weights/dinov2_vitb14_reg4_pretrain.safetensors",
expected_hash="5cd4d408",
2023-12-17 18:08:17 +00:00
)
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitl14_reg4_pretrain.pth",
"tests/weights/dinov2_vitl14_reg4_pretrain.safetensors",
expected_hash="b1221702",
2023-12-17 18:08:17 +00:00
)
2024-04-11 12:14:18 +00:00
run_conversion_script(
"convert_dinov2.py",
"tests/weights/dinov2_vitg14_reg4_pretrain.pth",
"tests/weights/dinov2_vitg14_reg4_pretrain.safetensors",
expected_hash="639398eb",
)
2023-12-17 18:08:17 +00:00
def convert_control_lora_fooocus():
run_conversion_script(
"convert_fooocus_control_lora.py",
"tests/weights/lllyasviel/misc/control-lora-canny-rank128.safetensors",
"tests/weights/control-loras/refiners_control-lora-canny-rank128.safetensors",
expected_hash="4d505134",
)
run_conversion_script(
"convert_fooocus_control_lora.py",
"tests/weights/lllyasviel/misc/fooocus_xl_cpds_128.safetensors",
"tests/weights/control-loras/refiners_fooocus_xl_cpds_128.safetensors",
expected_hash="d81aa461",
)
def convert_lcm_base():
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/latent-consistency/lcm-sdxl",
"tests/weights/sdxl-lcm-unet.safetensors",
half=True,
expected_hash="e161b20c",
)
def convert_sdxl_lightning_base():
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/stabilityai/stable-diffusion-xl-base-1.0",
"tests/weights/sdxl_lightning_4step_unet.safetensors",
additional_args=[
"--override-weights",
"tests/weights/ByteDance/SDXL-Lightning/sdxl_lightning_4step_unet.safetensors",
],
half=True,
expected_hash="cfdc46da",
)
run_conversion_script(
"convert_diffusers_unet.py",
"tests/weights/stabilityai/stable-diffusion-xl-base-1.0",
"tests/weights/sdxl_lightning_1step_unet_x0.safetensors",
additional_args=[
"--override-weights",
"tests/weights/ByteDance/SDXL-Lightning/sdxl_lightning_1step_unet_x0.safetensors",
],
half=True,
expected_hash="21166a64",
)
def convert_ic_light():
run_conversion_script(
"convert_ic_light.py",
"tests/weights/iclight_sd15_fc.safetensors",
"tests/weights/iclight_sd15_fc-refiners.safetensors",
half=False,
expected_hash="be315c1f",
)
def download_all():
print(f"\nAll weights will be downloaded to {test_weights_dir}\n")
download_sd15("runwayml/stable-diffusion-v1-5")
download_sd15("runwayml/stable-diffusion-inpainting")
download_sdxl("stabilityai/stable-diffusion-xl-base-1.0")
download_vae_ft_mse()
download_vae_fp16_fix()
download_loras()
download_preprocessors()
download_controlnet()
download_unclip()
download_ip_adapter()
download_t2i_adapter()
download_sam()
2024-03-21 13:59:36 +00:00
download_hq_sam()
2023-12-17 18:08:17 +00:00
download_dinov2()
download_control_lora_fooocus()
download_lcm_base()
download_lcm_lora()
download_sdxl_lightning_base()
download_sdxl_lightning_lora()
download_ic_light()
def convert_all():
convert_sd15()
convert_sdxl()
convert_vae_ft_mse()
convert_vae_fp16_fix()
# Note: no convert loras: this is done at runtime by `SDLoraManager`
convert_preprocessors()
convert_controlnet()
convert_unclip()
convert_ip_adapter()
convert_t2i_adapter()
convert_sam()
2024-03-21 13:59:36 +00:00
convert_hq_sam()
2023-12-17 18:08:17 +00:00
convert_dinov2()
convert_control_lora_fooocus()
convert_lcm_base()
convert_sdxl_lightning_base()
convert_ic_light()
def main():
try:
download_all()
print(f"{download_count} files ({human_readable_size(bytes_count)})\n")
if not bool(os.environ.get("DRY_RUN") == "1"):
printg("Converting weights to refiners format\n")
convert_all()
except KeyboardInterrupt:
print("Stopped")
if __name__ == "__main__":
main()