refiners/scripts/convert-clip-weights.py

51 lines
1.4 KiB
Python
Raw Normal View History

2023-08-04 13:28:41 +00:00
import torch
from safetensors.torch import save_file
from refiners.fluxion.utils import (
create_state_dict_mapping,
convert_state_dict,
)
from diffusers import DiffusionPipeline
from transformers.models.clip.modeling_clip import CLIPTextModel
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
@torch.no_grad()
def convert(src_model: CLIPTextModel) -> dict[str, torch.Tensor]:
dst_model = CLIPTextEncoderL()
x = dst_model.tokenizer("Nice cat", sequence_length=77)
mapping = create_state_dict_mapping(src_model, dst_model, [x])
state_dict = convert_state_dict(src_model.state_dict(), dst_model.state_dict(), mapping)
return {k: v.half() for k, v in state_dict.items()}
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--from",
type=str,
dest="source",
required=False,
default="runwayml/stable-diffusion-v1-5",
help="Source model",
)
parser.add_argument(
"--output-file",
type=str,
required=False,
default="CLIPTextEncoderL.safetensors",
help="Path for the output file",
)
args = parser.parse_args()
src_model = DiffusionPipeline.from_pretrained(args.source).text_encoder
tensors = convert(src_model)
save_file(tensors, args.output_file)
if __name__ == "__main__":
main()