refiners/tests/foundationals/latent_diffusion/test_auto_encoder.py

135 lines
5.2 KiB
Python
Raw Normal View History

from pathlib import Path
2023-08-04 13:28:41 +00:00
from warnings import warn
import pytest
import torch
2023-08-04 13:28:41 +00:00
from PIL import Image
from tests.utils import ensure_similar_images
2023-08-04 13:28:41 +00:00
from refiners.fluxion.utils import no_grad
from refiners.foundationals.latent_diffusion import LatentDiffusionAutoencoder, SD1Autoencoder, SDXLAutoencoder
2023-08-04 13:28:41 +00:00
@pytest.fixture(scope="module")
def ref_path() -> Path:
return Path(__file__).parent / "test_auto_encoder_ref"
@pytest.fixture(scope="module", params=["SD1.5", "SDXL"])
def lda(
request: pytest.FixtureRequest,
test_weights_path: Path,
test_dtype_fp32_bf16_fp16: torch.dtype,
test_device: torch.device,
) -> LatentDiffusionAutoencoder:
model_version = request.param
match (model_version, test_dtype_fp32_bf16_fp16):
case ("SD1.5", _):
weight_path = test_weights_path / "lda.safetensors"
if not weight_path.is_file():
warn(f"could not find weights at {weight_path}, skipping")
pytest.skip(allow_module_level=True)
model = SD1Autoencoder().load_from_safetensors(weight_path)
case ("SDXL", torch.float16):
weight_path = test_weights_path / "sdxl-lda-fp16-fix.safetensors"
if not weight_path.is_file():
warn(f"could not find weights at {weight_path}, skipping")
pytest.skip(allow_module_level=True)
model = SDXLAutoencoder().load_from_safetensors(weight_path)
case ("SDXL", _):
weight_path = test_weights_path / "sdxl-lda.safetensors"
if not weight_path.is_file():
warn(f"could not find weights at {weight_path}, skipping")
pytest.skip(allow_module_level=True)
model = SDXLAutoencoder().load_from_safetensors(weight_path)
case _:
raise ValueError(f"Unknown model version: {model_version}")
model = model.to(device=test_device, dtype=test_dtype_fp32_bf16_fp16)
return model
2023-08-04 13:28:41 +00:00
@pytest.fixture(scope="module")
def sample_image(ref_path: Path) -> Image.Image:
test_image = ref_path / "macaw.png"
if not test_image.is_file():
warn(f"could not reference image at {test_image}, skipping")
pytest.skip(allow_module_level=True)
img = Image.open(test_image) # type: ignore
2023-08-04 13:28:41 +00:00
assert img.size == (512, 512)
return img
@no_grad()
def test_encode_decode_image(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
encoded = lda.image_to_latents(sample_image)
decoded = lda.latents_to_image(encoded)
2023-08-04 13:28:41 +00:00
assert decoded.mode == "RGB" # type: ignore
2023-08-04 13:28:41 +00:00
# Ensure no saturation. The green channel (band = 1) must not max out.
assert max(iter(decoded.getdata(band=1))) < 255 # type: ignore
ensure_similar_images(sample_image, decoded, min_psnr=20, min_ssim=0.9)
@no_grad()
def test_encode_decode_images(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
encoded = lda.images_to_latents([sample_image, sample_image])
images = lda.latents_to_images(encoded)
assert isinstance(images, list)
assert len(images) == 2
ensure_similar_images(sample_image, images[1], min_psnr=20, min_ssim=0.9)
@no_grad()
def test_tiled_autoencoder(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
sample_image = sample_image.resize((2048, 2048)) # type: ignore
with lda.tiled_inference(sample_image, tile_size=(512, 512)):
encoded = lda.tiled_image_to_latents(sample_image)
result = lda.tiled_latents_to_image(encoded)
ensure_similar_images(sample_image, result, min_psnr=35, min_ssim=0.985)
@no_grad()
def test_tiled_autoencoder_rectangular_tiles(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
sample_image = sample_image.resize((2048, 2048)) # type: ignore
with lda.tiled_inference(sample_image, tile_size=(512, 1024)):
encoded = lda.tiled_image_to_latents(sample_image)
result = lda.tiled_latents_to_image(encoded)
ensure_similar_images(sample_image, result, min_psnr=35, min_ssim=0.985)
@no_grad()
def test_tiled_autoencoder_large_tile(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
sample_image = sample_image.resize((1024, 1024)) # type: ignore
with lda.tiled_inference(sample_image, tile_size=(2048, 2048)):
encoded = lda.tiled_image_to_latents(sample_image)
result = lda.tiled_latents_to_image(encoded)
ensure_similar_images(sample_image, result, min_psnr=34, min_ssim=0.975)
@no_grad()
def test_tiled_autoencoder_rectangular_image(lda: LatentDiffusionAutoencoder, sample_image: Image.Image):
sample_image = sample_image.crop((0, 0, 300, 500))
sample_image = sample_image.resize((sample_image.width * 4, sample_image.height * 4)) # type: ignore
with lda.tiled_inference(sample_image, tile_size=(512, 512)):
encoded = lda.tiled_image_to_latents(sample_image)
result = lda.tiled_latents_to_image(encoded)
ensure_similar_images(sample_image, result, min_psnr=37, min_ssim=0.985)
def test_value_error_tile_encode_no_context(lda: LatentDiffusionAutoencoder, sample_image: Image.Image) -> None:
with pytest.raises(ValueError):
lda.tiled_image_to_latents(sample_image)
with pytest.raises(ValueError):
lda.tiled_latents_to_image(torch.randn(1, 8, 16, 16, device=lda.device))