diff --git a/docs/getting-started/advanced.md b/docs/getting-started/advanced.md
index 6302252..2498e97 100644
--- a/docs/getting-started/advanced.md
+++ b/docs/getting-started/advanced.md
@@ -10,4 +10,6 @@ We use Rye to maintain and release Refiners but it conforms to the standard Pyth
## Using stable releases from PyPI
-Although we recommend using our development branch, we do [publish more stable releases to PyPI](https://pypi.org/project/refiners/) and you are welcome to use them in your project. However, note that the format of weights can be different from the current state of the development branch, so you will need the conversion scripts from the corresponding tag in GitHub, for instance [here for v0.2.0](https://github.com/finegrain-ai/refiners/tree/v0.2.0).
+Although we recommend using our development branch, we do publish more stable releases to [PyPI](https://pypi.org/project/refiners/) and you are welcome to use them in your project.
+They are also available directly on the [GitHub releases page](https://github.com/finegrain-ai/refiners/releases).
+However, beware that the format of weights can be different from the current state of the development branch.
diff --git a/docs/getting-started/recommended.md b/docs/getting-started/recommended.md
index 66158f0..07787f0 100644
--- a/docs/getting-started/recommended.md
+++ b/docs/getting-started/recommended.md
@@ -6,55 +6,100 @@ icon: material/star-outline
Refiners is still a young project and development is active, so to use the latest and greatest version of the framework we recommend you use the `main` branch from our development repository.
-Moreover, we recommend using [Rye](https://rye-up.com) which simplifies several things related to Python package management, so start by following the instructions to install it on your system.
+Moreover, we recommend using [Rye](https://rye.astral.sh/) which simplifies several things related to Python package management, so start by following the instructions to install it on your system.
## Installing
To try Refiners, clone the GitHub repository and install it with all optional features:
```bash
-git clone "git@github.com:finegrain-ai/refiners.git"
+git clone git@github.com:finegrain-ai/refiners.git
cd refiners
rye sync --all-features
```
## Converting weights
-The format of state dicts used by Refiners is custom and we do not redistribute model weights, but we provide conversion tools and working scripts for popular models. For instance, let us convert the autoencoder from Stable Diffusion 1.5:
+The format of state dicts used by Refiners is custom, so to use pretrained models you will need to convert weights.
+We provide conversion tools and pre-converted weights on our [HuggingFace organization](https://huggingface.co/refiners) for popular models.
-```bash
-python "scripts/conversion/convert_diffusers_autoencoder_kl.py" --to "lda.safetensors"
+For instance, to use the autoencoder from Stable Diffusion 1.5:
+
+### Use pre-converted weights
+
+```py
+from huggingface_hub import hf_hub_download
+from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import SD1Autoencoder
+
+# download the pre-converted weights from the hub
+safetensors_path = hf_hub_download(
+ repo_id="refiners/sd15.autoencoder",
+ filename="model.safetensors",
+ revision="9ce6af42e21fce64d74b1cab57a65aea82fd40ea", # optional
+)
+
+# initialize the model
+model = SD1Autoencoder()
+
+# load the pre-converted weights
+model.load_from_safetensors(safetensors_path)
```
-If you need to convert weights for all models, check out `script/prepare_test_weights.py`.
+### Convert the weights yourself
+
+If you want to convert the weights yourself, you can use the conversion tools we provide.
+
+```py
+from refiners.conversion import autoencoder_sd15
+
+# This function will:
+# - download the original weights from the internet, and save them to disk at a known location
+# (e.g. tests/weights/stable-diffusion-v1-5/stable-diffusion-v1-5/vae/diffusion_pytorch_model.safetensors)
+# - convert them to the refiners format, and save them to disk at a known location
+# (e.g. tests/weights/refiners/sd15.autoencoder/model.safetensors)
+autoencoder_sd15.runwayml.convert()
+
+# get the path to the converted weights
+safetensors_path = autoencoder_sd15.runwayml.converted.local_path
+
+# initialize the model
+model = SD1Autoencoder()
+
+# load the converted weights
+model.load_from_safetensors(safetensors_path)
+```
+
+!!! note
+ If you need to convert more model weights or all of them, check out the `refiners.conversion` module.
!!! warning
- Using `script/prepare_test_weights.py` requires a GPU with significant VRAM and a lot of disk space.
+ Converting all the weights requires a lot of disk space and CPU time, so be prepared.
+ Currently downloading all the original weights takes around ~100GB of disk space,
+ and converting them all takes around ~70GB of disk space.
-Now to check that it works copy your favorite 512x512 picture in the current directory as `input.png` and create `ldatest.py` with this content:
+!!! warning
+ Some conversion scripts may also require quite a bit of RAM, since they load the entire weights in memory,
+ ~16GB of RAM should be enough for most models, but some models may require more.
+
+
+### Testing the conversion
+
+To quickly check that the weights you got from the hub or converted yourself are correct, you can run the following snippet:
```py
from PIL import Image
from refiners.fluxion.utils import no_grad
-from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import SD1Autoencoder
+
+image = Image.open("input.png")
with no_grad():
- lda = SD1Autoencoder()
- lda.load_from_safetensors("lda.safetensors")
+ latents = model.image_to_latents(image)
+ decoded = model.latents_to_image(latents)
- image = Image.open("input.png")
- latents = lda.image_to_latents(image)
- decoded = lda.latents_to_image(latents)
- decoded.save("output.png")
+decoded.save("output.png")
```
-Run it:
-
-```bash
-python ldatest.py
-```
-
-Inspect `output.png`: it should be similar to `input.png` but have a few differences. Latent Autoencoders are good compressors!
+Inspect `output.png`, if the converted weights are correct, it should be similar to `input.png` (but have a few differences).
## Using Refiners in your own project
@@ -63,20 +108,28 @@ So far you used Refiners as a standalone package, but if you want to create your
```bash
rye init --py "3.11" myproject
cd myproject
-rye add --git "git@github.com:finegrain-ai/refiners.git" --features training refiners
+rye add refiners@git+https://github.com/finegrain-ai/refiners
rye sync
```
-If you only intend to do inference and no training, you can drop `--features training`.
-
-To convert weights, you can either use a copy of the `refiners` repository as described above or add the `conversion` feature as a development dependency:
+If you intend to use Refiners for training, you can install the `training` feature:
```bash
-rye add --dev --git "git@github.com:finegrain-ai/refiners.git" --features conversion refiners
+rye add refiners[training]@git+https://github.com/finegrain-ai/refiners
+```
+
+Similarly, if you need to use the conversion tools we provide, you install the `conversion` feature:
+
+```bash
+rye add refiners[conversion]@git+https://github.com/finegrain-ai/refiners
```
!!! note
- You will still need to download the conversion scripts independently if you go that route.
+ You can install multiple features at once by separating them with a comma:
+
+ ```bash
+ rye add refiners[training,conversion]@git+https://github.com/finegrain-ai/refiners
+ ```
## What's next?
diff --git a/docs/guides/adapting_sdxl/index.md b/docs/guides/adapting_sdxl/index.md
index e716c99..9a84269 100644
--- a/docs/guides/adapting_sdxl/index.md
+++ b/docs/guides/adapting_sdxl/index.md
@@ -4,87 +4,96 @@ icon: material/castle
# Adapting Stable Diffusion XL
-Stable Diffusion XL (SDXL) is a very popular text-to-image open source foundation model. This guide will show you how to boost its capabilities with Refiners, using iconic adapters the framework supports out-of-the-box, i.e. without the need for tedious prompt engineering. We'll follow a step by step approach, progressively increasing the number of adapters involved to showcase how simple adapter composition is using Refiners. Our use case will be the generation of an image with "a futuristic castle surrounded by a forest, mountains in the background".
+Stable Diffusion XL (SDXL) is a very popular text-to-image open source foundation model.
+This guide will show you how to boost its capabilities with Refiners, using iconic adapters the framework supports out-of-the-box (i.e. without the need for tedious prompt engineering).
+We'll follow a step by step approach, progressively increasing the number of adapters involved to showcase how simple adapter composition is using Refiners.
+Our use case will be the generation of an image with "a futuristic castle surrounded by a forest, mountains in the background".
-## Prerequisites
+## Baseline
-Make sure Refiners is installed in your local environment - see [Getting started](/getting-started/recommended/) - and you have access to a decent GPU.
-
-!!! warning
- As the examples in this guide's code snippets use CUDA, a minimum of 24GB VRAM is needed.
+Make sure that Refiners is installed in your local environment (see [Getting started](/getting-started/recommended/)),
+and that you have access to a decent GPU (~24 GB VRAM should be enough).
Before diving into the adapters themselves, let's establish a baseline by simply prompting SDXL with Refiners.
!!! note "Reminder"
- A StableDiffusion model is composed of three modules:
-
- - An Autoencoder, responsible for embedding images into a latent space;
- - A UNet, responsible for the diffusion process;
- - A prompt encoder, such as CLIP, responsible for encoding the user prompt which will guide the diffusion process.
+ A StableDiffusion model is composed of three modules:
-As Refiners comes with a new model representation - see [Chain](/concepts/chain/) - , you need to download and convert the weights of each module by calling our conversion scripts directly from your terminal (make sure you're in your local `refiners` directory, with your local environment active):
+ - An Autoencoder, responsible for embedding images into a latent space
+ - A UNet, responsible for the diffusion process
+ - A Text Encoder, responsible for encoding the user prompt which will guide the diffusion process.
-```bash
-python scripts/conversion/convert_transformers_clip_text_model.py --from "stabilityai/stable-diffusion-xl-base-1.0" --subfolder2 text_encoder_2 --to DoubleCLIPTextEncoder.safetensors --half
-python scripts/conversion/convert_diffusers_unet.py --from "stabilityai/stable-diffusion-xl-base-1.0" --to sdxl-unet.safetensors --half
-python scripts/conversion/convert_diffusers_autoencoder_kl.py --from "madebyollin/sdxl-vae-fp16-fix" --subfolder "" --to sdxl-lda.safetensors --half
-```
-
-!!! note
- This will download the original weights from https://huggingface.co/ which takes some time. If you already have this repo cloned locally, use the `--from /path/to/stabilityai/stable-diffusion-xl-base-1.0` option instead.
-
-Now, we can write the Python script responsible for inference. Just create a simple `inference.py` file, and open it in your favorite editor.
-
-Start by instantiating a [`StableDiffusion_XL`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.StableDiffusion_XL] model and load it with the converted weights:
+Start by instantiating a [`StableDiffusion_XL`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.StableDiffusion_XL] model and load the weights.
```py
import torch
+from huggingface_hub import hf_hub_download
-from refiners.fluxion.utils import manual_seed, no_grad
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
-# Load SDXL
-sdxl = StableDiffusion_XL(device="cuda", dtype=torch.float16) # Using half-precision for memory efficiency
-sdxl.clip_text_encoder.load_from_safetensors("DoubleCLIPTextEncoder.safetensors")
-sdxl.unet.load_from_safetensors("sdxl-unet.safetensors")
-sdxl.lda.load_from_safetensors("sdxl-lda.safetensors")
+# instantiate SDXL model
+sdxl = StableDiffusion_XL(
+ device="cuda", # use GPU
+ dtype=torch.float16 # use half-precision for memory efficiency
+)
+# Load the weights
+sdxl.clip_text_encoder.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.text_encoder",
+ filename="model.safetensors",
+ )
+)
+sdxl.unet.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.unet",
+ filename="model.safetensors",
+ )
+)
+sdxl.lda.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.autoencoder_fp16fix",
+ filename="model.safetensors",
+ )
+)
```
-Then, define the inference parameters by setting the appropriate prompt / seed / inference steps:
+Then, define the inference parameters by setting the appropriate prompt, seed and number of inference steps:
```py
-# Hyperparameters
-prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+# hyperparameters
seed = 42
-sdxl.set_inference_steps(50, first_step=0)
-
-# Enable self-attention guidance to enhance the quality of the generated images
-sdxl.set_self_attention_guidance(enable=True, scale=0.75)
-
-# ... Inference process
+num_inference_steps = 50
+prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+sdxl.set_inference_steps(num_inference_steps, first_step=0)
+# enable self-attention guidance to enhance the quality of the generated images
+sag_scale = 0.75
+sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
```
-You can now define and run the proper inference process:
+Finally, define and run the inference process:
```py
-with no_grad(): # Disable gradient calculation for memory-efficient inference
+from refiners.fluxion.utils import manual_seed, no_grad
+from tqdm import tqdm
+
+with no_grad(): # disable gradient calculation for memory-efficient inference
+ # encode the text prompts to embeddings, and get the time_ids
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
text=prompt + ", best quality, high quality",
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
)
time_ids = sdxl.default_time_ids
+ # seed the random number generator, for reproducibility
manual_seed(seed)
- # SDXL typically generates 1024x1024, here we use a higher resolution.
- x = sdxl.init_latents((2048, 2048)).to(sdxl.device, sdxl.dtype)
+ # SDXL typically generates 1024x1024, here we use a higher resolution
+ x = sdxl.init_latents((2048, 2048))
- # Diffusion process
- for step in sdxl.steps:
- if step % 10 == 0:
- print(f"Step {step}")
+ # diffusion denoising process
+ for step in tqdm(sdxl.steps):
x = sdxl(
x,
step=step,
@@ -95,49 +104,70 @@ with no_grad(): # Disable gradient calculation for memory-efficient inference
predicted_image = sdxl.lda.latents_to_image(x)
predicted_image.save("vanilla_sdxl.png")
-
```
-
??? example "Expand to see the entire end-to-end code"
```py
import torch
+ from huggingface_hub import hf_hub_download
+ from tqdm import tqdm
from refiners.fluxion.utils import manual_seed, no_grad
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
- # Load SDXL
- sdxl = StableDiffusion_XL(device="cuda", dtype=torch.float16)
- sdxl.clip_text_encoder.load_from_safetensors("DoubleCLIPTextEncoder.safetensors")
- sdxl.unet.load_from_safetensors("sdxl-unet.safetensors")
- sdxl.lda.load_from_safetensors("sdxl-lda.safetensors")
+ # instantiate SDXL model
+ sdxl = StableDiffusion_XL(
+ device="cuda", # use GPU
+ dtype=torch.float16 # use half-precision for memory efficiency
+ )
- # Hyperparameters
- prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ # Load the weights
+ sdxl.clip_text_encoder.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.text_encoder",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.unet.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.unet",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.lda.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.autoencoder_fp16fix",
+ filename="model.safetensors",
+ )
+ )
+
+ # hyperparameters
seed = 42
- sdxl.set_inference_steps(50, first_step=0)
- sdxl.set_self_attention_guidance(
- enable=True, scale=0.75
- ) # Enable self-attention guidance to enhance the quality of the generated images
+ num_inference_steps = 50
+ prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ sdxl.set_inference_steps(num_inference_steps, first_step=0)
+ # enable self-attention guidance to enhance the quality of the generated images
+ sag_scale = 0.75
+ sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
- with no_grad(): # Disable gradient calculation for memory-efficient inference
+ with no_grad(): # disable gradient calculation for memory-efficient inference
+ # encode the text prompts to embeddings, and get the time_ids
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
text=prompt + ", best quality, high quality",
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
)
time_ids = sdxl.default_time_ids
- manual_seed(seed=seed)
+ # seed the random number generator, for reproducibility
+ manual_seed(seed)
- # SDXL typically generates 1024x1024, here we use a higher resolution.
- x = sdxl.init_latents((2048, 2048)).to(sdxl.device, sdxl.dtype)
+ # SDXL typically generates 1024x1024, here we use a higher resolution
+ x = sdxl.init_latents((2048, 2048))
- # Diffusion process
- for step in sdxl.steps:
- if step % 10 == 0:
- print(f"Step {step}")
+ # diffusion denoising process
+ for step in tqdm(sdxl.steps):
x = sdxl(
x,
step=step,
@@ -148,22 +178,32 @@ predicted_image.save("vanilla_sdxl.png")
predicted_image = sdxl.lda.latents_to_image(x)
predicted_image.save("vanilla_sdxl.png")
-
```
-
-It's time to execute your code. The resulting image should look like this:
+The resulting image should look like this:
-It is not really what we prompted the model for, unfortunately. To get a more futuristic-looking castle, you can either go for tedious prompt engineering, or use a pretrainered LoRA tailored to our use case, like the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA available on Civitai. We'll now show you how the LoRA option works with Refiners.
+It is not really what we prompted the model for, unfortunately.
+To get a more futuristic-looking castle, you can either go for tedious prompt engineering, or use a pretrainered LoRA tailored to our use case,
+like the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA available on Civitai.
+We'll now show you how the LoRA option works with Refiners.
## Single LoRA
-To use the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA, all you have to do is download its weights to disk as a `.safetensors`, and inject them into SDXL using [`SDLoraManager`][refiners.foundationals.latent_diffusion.lora.SDLoraManager] right after instantiating `StableDiffusion_XL`:
+Let's use the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA.
+LoRas don't need to be converted, all you have to do is download the safetensors file from the internet.
+
+You can easily download the LoRA by doing:
+```bash
+curl -L -o scifi.safetensors 'https://civitai.com/api/download/models/140624?type=Model&format=SafeTensor'
+```
+
+Inject the LoRA into SDXL using [`SDLoraManager`][refiners.foundationals.latent_diffusion.lora.SDLoraManager] right after instantiating `StableDiffusion_XL`:
+
```py
from refiners.fluxion.utils import load_from_safetensors
@@ -171,55 +211,78 @@ from refiners.foundationals.latent_diffusion.lora import SDLoraManager
# Load LoRA weights from disk and inject them into target
manager = SDLoraManager(sdxl)
-scifi_lora_weights = load_from_safetensors("Sci-fi_Environments_sdxl.safetensors")
-manager.add_loras("scifi-lora", tensors=scifi_lora_weights)
-
+scifi_lora_weights = load_from_safetensors("scifi.safetensors")
+manager.add_loras("scifi", tensors=scifi_lora_weights)
```
??? example "Expand to see the entire end-to-end code"
```py
import torch
+ from huggingface_hub import hf_hub_download
+ from tqdm import tqdm
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
- # Load SDXL
- sdxl = StableDiffusion_XL(device="cuda", dtype=torch.float16)
- sdxl.clip_text_encoder.load_from_safetensors("DoubleCLIPTextEncoder.safetensors")
- sdxl.unet.load_from_safetensors("sdxl-unet.safetensors")
- sdxl.lda.load_from_safetensors("sdxl-lda.safetensors")
+ # instantiate SDXL model
+ sdxl = StableDiffusion_XL(
+ device="cuda", # use GPU
+ dtype=torch.float16 # use half-precision for memory efficiency
+ )
- # Load LoRA weights from disk and inject them into target
+ # Load the weights
+ sdxl.clip_text_encoder.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.text_encoder",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.unet.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.unet",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.lda.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.autoencoder_fp16fix",
+ filename="model.safetensors",
+ )
+ )
+
+ # add Sci-Fi LoRA
manager = SDLoraManager(sdxl)
- scifi_lora_weights = load_from_safetensors("Sci-fi_Environments_sdxl.safetensors")
- manager.add_loras("scifi-lora", tensors=scifi_lora_weights)
+ scifi_lora_weights = load_from_safetensors("scifi.safetensors")
+ manager.add_loras("scifi", tensors=scifi_lora_weights)
- # Hyperparameters
- prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ # hyperparameters
seed = 42
- sdxl.set_inference_steps(50, first_step=0)
- sdxl.set_self_attention_guidance(
- enable=True, scale=0.75
- ) # Enable self-attention guidance to enhance the quality of the generated images
+ num_inference_steps = 50
+ prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ sdxl.set_inference_steps(num_inference_steps, first_step=0)
- with no_grad():
+ # enable self-attention guidance to enhance the quality of the generated images
+ sag_scale = 0.75
+ sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
+
+ with no_grad(): # disable gradient calculation for memory-efficient inference
+ # encode the text prompts to embeddings, and get the time_ids
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
text=prompt + ", best quality, high quality",
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
)
time_ids = sdxl.default_time_ids
- manual_seed(seed=seed)
+ # seed the random number generator, for reproducibility
+ manual_seed(seed)
- # SDXL typically generates 1024x1024, here we use a higher resolution.
- x = sdxl.init_latents((2048, 2048)).to(sdxl.device, sdxl.dtype)
+ # SDXL typically generates 1024x1024, here we use a higher resolution
+ x = sdxl.init_latents((2048, 2048))
- # Diffusion process
- for step in sdxl.steps:
- if step % 10 == 0:
- print(f"Step {step}")
+ # diffusion denoising process
+ for step in tqdm(sdxl.steps):
x = sdxl(
x,
step=step,
@@ -227,13 +290,14 @@ manager.add_loras("scifi-lora", tensors=scifi_lora_weights)
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
)
+
+ # decode the latents to an image
predicted_image = sdxl.lda.decode_latents(x)
predicted_image.save("scifi_sdxl.png")
-
```
-You should get something like this - pretty neat, isn't it?
+You should get something like this - pretty neat, isn't it?
-## Everything else + T2I-Adapter
+## Multiple LoRAs + IP-Adapter + T2I-Adapter
-T2I-Adapters[^1] are a powerful class of Adapters aiming at controlling the Text-to-Image (T2I) diffusion process with external control signals, such as canny edges or pose estimations inputs.
+T2I-Adapters are a powerful class of Adapters aiming at controlling the Text-to-Image (T2I) diffusion process with external control signals, such as canny edges or pose estimations inputs.
In this section, we will compose our previous example with the [Depth-Zoe Adapter](https://huggingface.co/TencentARC/t2i-adapter-depth-zoe-sdxl-1.0), providing a depth condition to the diffusion process using the following depth map as input signal:
@@ -477,21 +613,27 @@ In this section, we will compose our previous example with the [Depth-Zoe Adapte
Input depth map of the initial castle image.
-First, download the image as well as the weights of T2I-Depth-Zoe-Adapter by calling the following commands:
+You can easily download the above image by doing:
```bash
curl -O https://refine.rs/guides/adapting_sdxl/zoe-depth-map-german-castle.png
-python scripts/conversion/convert_diffusers_t2i_adapter.py --from "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0" --to t2i_depth_zoe_xl.safetensors --half
```
Then, just inject it as usual:
```py
+from refiners.foundationals.latent_diffusion.stable_diffusion_xl.t2i_adapter import SDXLT2IAdapter
+
# Load T2I-Adapter
t2i_adapter = SDXLT2IAdapter(
- target=sdxl.unet,
- name="zoe-depth",
- weights=load_from_safetensors("t2i_depth_zoe_xl.safetensors"),
+ target=sdxl.unet,
+ name="zoe-depth",
+ weights=load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.t2i_adapter.depth.zoe",
+ filename="model.safetensors",
+ ),
+ ),
scale=0.72,
).inject()
```
@@ -515,75 +657,120 @@ with torch.no_grad():
```py
import torch
+ from huggingface_hub import hf_hub_download
from PIL import Image
+ from tqdm import tqdm
- from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad, image_to_tensor
+ from refiners.fluxion.utils import image_to_tensor, interpolate, load_from_safetensors, manual_seed, no_grad
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
- from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL, SDXLT2IAdapter
+ from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt import SDXLIPAdapter
+ from refiners.foundationals.latent_diffusion.stable_diffusion_xl.t2i_adapter import SDXLT2IAdapter
- # Load SDXL
- sdxl = StableDiffusion_XL(device="cuda", dtype=torch.float16)
- sdxl.clip_text_encoder.load_from_safetensors("DoubleCLIPTextEncoder.safetensors")
- sdxl.unet.load_from_safetensors("sdxl-unet.safetensors")
- sdxl.lda.load_from_safetensors("sdxl-lda.safetensors")
+ # instantiate SDXL model
+ sdxl = StableDiffusion_XL(
+ device="cuda", # use GPU
+ dtype=torch.float16 # use half-precision for memory efficiency
+ )
- # Load LoRAs weights from disk and inject them into target
+ # Load the weights
+ sdxl.clip_text_encoder.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.text_encoder",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.unet.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.unet",
+ filename="model.safetensors",
+ )
+ )
+ sdxl.lda.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.autoencoder_fp16fix",
+ filename="model.safetensors",
+ )
+ )
+
+ # hyperparameters
+ seed = 42
+ num_inference_steps = 50
+ prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ sdxl.set_inference_steps(num_inference_steps, first_step=0)
+
+ # enable self-attention guidance to enhance the quality of the generated images
+ sag_scale = 0.75
+ sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
+
+ # add Sci-Fi and Pixel-Art LoRAs
manager = SDLoraManager(sdxl)
- scifi_lora_weights = load_from_safetensors("Sci-fi_Environments_sdxl.safetensors")
- pixel_art_lora_weights = load_from_safetensors("pixel-art-xl-v1.1.safetensors")
- manager.add_loras("scifi-lora", scifi_lora_weights, scale=1.5)
- manager.add_loras("pixel-art-lora", pixel_art_lora_weights, scale=1.55)
+ manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"), scale=1.5)
+ manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"), scale=1.55)
- # Load IP-Adapter
+ # Instantiate the IP-Adapter
ip_adapter = SDXLIPAdapter(
target=sdxl.unet,
- weights=load_from_safetensors("ip-adapter-plus_sdxl_vit-h.safetensors"),
+ weights=load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.ip_adapter.plus",
+ filename="model.safetensors",
+ ),
+ ),
scale=1.0,
- fine_grained=True, # Use fine-grained IP-Adapter (IP-Adapter Plus)
+ fine_grained=True, # Use fine-grained IP-Adapter (i.e IP-Adapter Plus)
+ )
+ ip_adapter.clip_image_encoder.load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sd21.unclip.image_encoder",
+ filename="model.safetensors",
+ )
)
- ip_adapter.clip_image_encoder.load_from_safetensors("CLIPImageEncoderH.safetensors")
ip_adapter.inject()
# Load T2I-Adapter
t2i_adapter = SDXLT2IAdapter(
- target=sdxl.unet,
- name="zoe-depth",
- weights=load_from_safetensors("t2i_depth_zoe_xl.safetensors"),
+ target=sdxl.unet,
+ name="zoe-depth",
+ weights=load_from_safetensors(
+ hf_hub_download(
+ repo_id="refiners/sdxl.t2i_adapter.depth.zoe",
+ filename="model.safetensors",
+ ),
+ ),
scale=0.72,
).inject()
- # Hyperparameters
- prompt = "a futuristic castle surrounded by a forest, mountains in the background"
+ # load image prompt and image depth condition
image_prompt = Image.open("german-castle.jpg")
image_depth_condition = Image.open("zoe-depth-map-german-castle.png")
- seed = 42
- sdxl.set_inference_steps(50, first_step=0)
- sdxl.set_self_attention_guidance(
- enable=True, scale=0.75
- ) # Enable self-attention guidance to enhance the quality of the generated images
- with no_grad():
+ with no_grad(): # disable gradient calculation for memory-efficient inference
+ # encode the text prompts to embeddings, and get the time_ids
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
text=prompt + ", best quality, high quality",
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
)
time_ids = sdxl.default_time_ids
+ # compute and set image prompt embeddings
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(image_prompt))
ip_adapter.set_clip_image_embedding(clip_image_embedding)
- # Spatial dimensions should be divisible by default downscale factor (=16 for T2IAdapter ConditionEncoder)
- condition = image_to_tensor(image_depth_condition.convert("RGB").resize((1024, 1024)), device=sdxl.device, dtype=sdxl.dtype)
- t2i_adapter.set_condition_features(features=t2i_adapter.compute_condition_features(condition))
+ # compute and set the T2I features
+ condition = image_to_tensor(image_depth_condition.convert("RGB"), device=sdxl.device, dtype=sdxl.dtype)
+ condition = interpolate(condition, torch.Size((1024, 1024)))
+ t2i_features = t2i_adapter.compute_condition_features(condition)
+ t2i_adapter.set_condition_features(features=t2i_features)
- manual_seed(seed=seed)
- x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
+ # seed the random number generator, for reproducibility
+ manual_seed(seed)
- # Diffusion process
- for step in sdxl.steps:
- if step % 10 == 0:
- print(f"Step {step}")
+ # SDXL typically generates 1024x1024
+ x = sdxl.init_latents((1024, 1024))
+
+ # diffusion denoising process
+ for step in tqdm(sdxl.steps):
x = sdxl(
x,
step=step,
@@ -594,7 +781,6 @@ with torch.no_grad():
predicted_image = sdxl.lda.latents_to_image(x)
predicted_image.save("scifi_pixel_IP_T2I_sdxl.png")
-
```
The results look convincing: the depth and proportions of the initial castle are more faithful, while preserving our *futuristic, pixel-art style*!
@@ -606,5 +792,3 @@ The results look convincing: the depth and proportions of the initial castle are
## Wrap up
As you can see in this guide, composing Adapters on top of foundation models is pretty seamless in Refiners, allowing practitioners to quickly test out different combinations of Adapters for their needs. We encourage you to try out different ones, and even train some yourselves!
-
-[^1]: Mou, C., Wang, X., Xie, L., Zhang, J., Qi, Z., Shan, Y., & Qie, X. (2023). T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
diff --git a/docs/index.md b/docs/index.md
index 955e19f..7c0c6bf 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -14,7 +14,7 @@ icon: material/water-outline
[![packaging - Hatch](https://img.shields.io/badge/%F0%9F%A5%9A-Hatch-4051b5.svg)](https://github.com/pypa/hatch)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/refiners)](https://pypi.org/project/refiners/)
[![PyPI - Status](https://badge.fury.io/py/refiners.svg)](https://badge.fury.io/py/refiners)
- [![license](https://img.shields.io/badge/license-MIT-blue)](/LICENSE)
+ [![license](https://img.shields.io/badge/license-MIT-blue)](https://github.com/finegrain-ai/refiners/blob/main/LICENSE)
[![code bounties](https://img.shields.io/badge/code-bounties-blue)](https://finegrain.ai/bounties)
[![Discord](https://img.shields.io/discord/1179456777406922913?logo=discord&logoColor=white&color=%235765F2)](https://discord.gg/mCmjNUVV7d)
[![HuggingFace - Refiners](https://img.shields.io/badge/refiners-ffd21e?logo=huggingface&labelColor=555)](https://huggingface.co/refiners)
diff --git a/docs/overrides/main.html b/docs/overrides/main.html
index 7acd152..d281036 100644
--- a/docs/overrides/main.html
+++ b/docs/overrides/main.html
@@ -2,6 +2,6 @@
{% block announce %}
-Check out our brand new Bounty Program 💰!
+Check out our Bounty Program 💰!
-{% endblock %}
\ No newline at end of file
+{% endblock %}
diff --git a/docs/reference/SUMMARY.md b/docs/reference/SUMMARY.md
index 76475d6..a973912 100644
--- a/docs/reference/SUMMARY.md
+++ b/docs/reference/SUMMARY.md
@@ -1,8 +1,7 @@
* Fluxion
* [ Adapters](fluxion/adapters.md)
- * [ Context](fluxion/context.md)
* [ Layers](fluxion/layers.md)
- * [ Model Converter](fluxion/model_converter.md)
+ * [ Context](fluxion/context.md)
* [ Utils](fluxion/utils.md)
* Foundation Models
* [ CLIP](foundationals/clip.md)
diff --git a/mkdocs.yml b/mkdocs.yml
index d46d823..00fafa0 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -33,7 +33,7 @@ plugins:
python:
import:
- https://docs.python.org/3/objects.inv
- - https://pytorch.org/docs/master/objects.inv
+ - https://pytorch.org/docs/main/objects.inv
- https://docs.kidger.site/jaxtyping/objects.inv
options:
show_bases: true
@@ -55,7 +55,7 @@ watch:
extra_css:
- stylesheets/extra.css
nav:
- - Home:
+ - Home:
- Welcome: index.md
- Manifesto: home/why.md
- Getting started:
@@ -75,9 +75,9 @@ extra:
- icon: fontawesome/brands/discord
link: https://discord.gg/mCmjNUVV7d
- icon: fontawesome/brands/github
- link: https://github.com/finegrain-ai/refiners
+ link: https://github.com/finegrain-ai/refiners
- icon: fontawesome/brands/twitter
- link: https://twitter.com/finegrain_ai
+ link: https://twitter.com/finegrain_ai
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/finegrain-ai/
markdown_extensions:
diff --git a/src/refiners/foundationals/latent_diffusion/image_prompt.py b/src/refiners/foundationals/latent_diffusion/image_prompt.py
index c29da79..f5acf56 100644
--- a/src/refiners/foundationals/latent_diffusion/image_prompt.py
+++ b/src/refiners/foundationals/latent_diffusion/image_prompt.py
@@ -464,25 +464,25 @@ class IPAdapter(Generic[T], fl.Chain, Adapter[T]):
Args:
image_prompt: A single image or a list of images to compute embeddings for.
- This can be a PIL Image, a list of PIL Images, or a Tensor.
+ This can be a PIL Image, a list of PIL Images, or a Tensor.
weights: An optional list of scaling factors for the conditional embeddings.
- If provided, it must have the same length as the number of images in `image_prompt`.
- Each weight scales the corresponding image's conditional embedding, allowing you to
- adjust the influence of each image. Defaults to uniform weights of 1.0.
+ If provided, it must have the same length as the number of images in `image_prompt`.
+ Each weight scales the corresponding image's conditional embedding, allowing you to
+ adjust the influence of each image. Defaults to uniform weights of 1.0.
concat_batches: Determines how embeddings are concatenated when multiple images are provided:
- - If `True`, embeddings from multiple images are concatenated along the feature
- dimension to form a longer sequence of image tokens. This is useful when you want to
- treat multiple images as a single combined input.
- - If `False`, embeddings are kept separate along the batch dimension, treating each image
- independently.
+ - If `True`, embeddings from multiple images are concatenated along the feature
+ dimension to form a longer sequence of image tokens. This is useful when you want to
+ treat multiple images as a single combined input.
+ - If `False`, embeddings are kept separate along the batch dimension, treating each image
+ independently.
Returns:
A Tensor containing the CLIP image embeddings.
The structure of the returned Tensor depends on the `concat_batches` parameter:
- - If `concat_batches` is `True` and multiple images are provided, the embeddings are
- concatenated along the feature dimension.
- - If `concat_batches` is `False` or a single image is provided, the embeddings are returned
- as a batch, with one embedding per image.
+ - If `concat_batches` is `True` and multiple images are provided, the embeddings are
+ concatenated along the feature dimension.
+ - If `concat_batches` is `False` or a single image is provided, the embeddings are returned
+ as a batch, with one embedding per image.
"""
if isinstance(image_prompt, Image.Image):
image_prompt = self.preprocess_image(image_prompt)