mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 13:48:46 +00:00
add converter layer + tests
This commit is contained in:
parent
4526d58cd5
commit
108fa8f26a
|
@ -34,6 +34,7 @@ from refiners.fluxion.layers.module import Module, WeightedModule, ContextModule
|
|||
from refiners.fluxion.layers.padding import ReflectionPad2d
|
||||
from refiners.fluxion.layers.sampling import Downsample, Upsample, Interpolate
|
||||
from refiners.fluxion.layers.embedding import Embedding
|
||||
from refiners.fluxion.layers.converter import Converter
|
||||
|
||||
__all__ = [
|
||||
"Embedding",
|
||||
|
@ -84,4 +85,5 @@ __all__ = [
|
|||
"ContextModule",
|
||||
"Interpolate",
|
||||
"ReflectionPad2d",
|
||||
"Converter",
|
||||
]
|
||||
|
|
44
src/refiners/fluxion/layers/converter.py
Normal file
44
src/refiners/fluxion/layers/converter.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
from refiners.fluxion.layers.module import ContextModule
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class Converter(ContextModule):
|
||||
"""
|
||||
A Converter class that adjusts tensor properties based on a parent module's settings.
|
||||
|
||||
This class inherits from `ContextModule` and provides functionality to adjust
|
||||
the device and dtype of input tensor(s) to match the parent module's attributes.
|
||||
|
||||
Attributes:
|
||||
set_device (bool): If True, matches the device of the input tensor(s) to the parent's device.
|
||||
set_dtype (bool): If True, matches the dtype of the input tensor(s) to the parent's dtype.
|
||||
|
||||
Note:
|
||||
Ensure the parent module has `device` and `dtype` attributes if `set_device` or `set_dtype` are set to True.
|
||||
"""
|
||||
|
||||
def __init__(self, set_device: bool = True, set_dtype: bool = True) -> None:
|
||||
super().__init__()
|
||||
self.set_device = set_device
|
||||
self.set_dtype = set_dtype
|
||||
|
||||
def forward(self, *inputs: Tensor) -> tuple[Tensor]:
|
||||
parent = self.ensure_parent
|
||||
converted_tensors: list[Tensor] = []
|
||||
|
||||
for x in inputs:
|
||||
if self.set_device:
|
||||
device = parent.device
|
||||
assert device is not None, "parent has no device"
|
||||
x = x.to(device=device)
|
||||
if self.set_dtype:
|
||||
dtype = parent.dtype
|
||||
assert dtype is not None, "parent has no dtype"
|
||||
x = x.to(dtype=dtype)
|
||||
|
||||
converted_tensors.append(x)
|
||||
|
||||
return tuple(converted_tensors)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"{self.__class__.__name__}(set_device={self.set_device}, set_dtype={self.set_dtype})"
|
62
tests/fluxion/layers/test_converter.py
Normal file
62
tests/fluxion/layers/test_converter.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import torch
|
||||
import pytest
|
||||
import refiners.fluxion.layers as fl
|
||||
from refiners.fluxion.layers.chain import Distribute
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available")
|
||||
def test_converter_device_single_tensor() -> None:
|
||||
chain = fl.Chain(
|
||||
fl.Converter(set_device=True, set_dtype=False),
|
||||
fl.Linear(in_features=1, out_features=1, device="cuda:0"),
|
||||
)
|
||||
|
||||
tensor = torch.randn(1, 1)
|
||||
converted_tensor = chain(tensor)
|
||||
|
||||
assert converted_tensor.device == torch.device(device="cuda:0")
|
||||
|
||||
|
||||
def test_converter_dtype_single_tensor() -> None:
|
||||
chain = fl.Chain(
|
||||
fl.Converter(set_device=False, set_dtype=True),
|
||||
fl.Linear(in_features=1, out_features=1, dtype=torch.float64),
|
||||
)
|
||||
|
||||
tensor = torch.randn(1, 1).to(dtype=torch.float32)
|
||||
converted_tensor = chain(tensor)
|
||||
|
||||
assert converted_tensor.dtype == torch.float64
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available")
|
||||
def test_converter_multiple_tensors() -> None:
|
||||
chain = fl.Chain(
|
||||
fl.Converter(set_device=True, set_dtype=True),
|
||||
Distribute(
|
||||
fl.Linear(in_features=1, out_features=1, device="cuda:0", dtype=torch.float64),
|
||||
fl.Linear(in_features=1, out_features=1, device="cuda:0", dtype=torch.float64),
|
||||
),
|
||||
)
|
||||
|
||||
tensor1 = torch.randn(1, 1)
|
||||
tensor2 = torch.randn(1, 1)
|
||||
|
||||
converted_tensor1, converted_tensor2 = chain(tensor1, tensor2)
|
||||
|
||||
assert converted_tensor1.device == torch.device(device="cuda:0")
|
||||
assert converted_tensor1.dtype == torch.float64
|
||||
assert converted_tensor2.device == torch.device(device="cuda:0")
|
||||
assert converted_tensor2.dtype == torch.float64
|
||||
|
||||
|
||||
def test_converter_no_parent_device_or_dtype() -> None:
|
||||
chain = fl.Chain(
|
||||
fl.Lambda(func=(lambda x: x)),
|
||||
fl.Converter(set_device=True, set_dtype=False),
|
||||
)
|
||||
|
||||
tensor = torch.randn(1, 1)
|
||||
|
||||
with pytest.raises(expected_exception=ValueError):
|
||||
chain(tensor)
|
Loading…
Reference in a new issue